151 lines
7.1 KiB
JSON
151 lines
7.1 KiB
JSON
|
[
|
|||
|
{
|
|||
|
"id": 0,
|
|||
|
"words": [
|
|||
|
{
|
|||
|
"id": 0,
|
|||
|
"word": "Tech",
|
|||
|
"definition": "short for technical, relating to the knowledge, machines, or methods used in science and industry. Tech is a whole industry, which includes IT",
|
|||
|
"examples": [
|
|||
|
"“As a DevOps engineer I have been working in Tech since 2020.”"
|
|||
|
],
|
|||
|
"synonyms": ["IT"]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 1,
|
|||
|
"word": "career path",
|
|||
|
"definition": "the series of jobs or roles that constitute a person's career, especially one in a particular field",
|
|||
|
"examples": [
|
|||
|
"“Technology is an evolving field with a variety of available career paths.”"
|
|||
|
],
|
|||
|
"synonyms": []
|
|||
|
}
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 1,
|
|||
|
"words": [
|
|||
|
{
|
|||
|
"id": 0,
|
|||
|
"word": "Machine Learning",
|
|||
|
"translation": "Машинное обучение",
|
|||
|
"definition": "An approach to artificial intelligence where computers learn from data without being explicitly programmed.",
|
|||
|
"synonyms": ["Trainable Algorithms", "Automated Learning"],
|
|||
|
"examples": [
|
|||
|
"We used machine learning techniques to forecast product demand.",
|
|||
|
"The movie recommendation system is based on machine learning algorithms.",
|
|||
|
"Machine learning helped improve the accuracy of speech recognition in our application."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 1,
|
|||
|
"word": "Neural Network",
|
|||
|
"translation": "Нейронная сеть",
|
|||
|
"definition": "A mathematical model inspired by the structure and function of biological neural networks, consisting of interconnected nodes organized in layers that can process information.",
|
|||
|
"synonyms": ["Artificial Neural Network", "Deep Neural Network"],
|
|||
|
"examples": [
|
|||
|
"To process large amounts of data, we created a deep learning neural network.",
|
|||
|
"This neural network is capable of generating realistic images.",
|
|||
|
"Using neural networks significantly improved the quality of text translation."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 2,
|
|||
|
"word": "Algorithm",
|
|||
|
"translation": "Алгоритм",
|
|||
|
"definition": "A step-by-step procedure or set of instructions for solving a problem or performing a computation.",
|
|||
|
"synonyms": ["Procedure", "Method"],
|
|||
|
"examples": [
|
|||
|
"The algorithm we developed quickly finds the optimal delivery route.",
|
|||
|
"This algorithm sorts an array with a minimal number of operations.",
|
|||
|
"Encryption algorithms ensure secure transmission of data over the internet."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 3,
|
|||
|
"word": "Data Model",
|
|||
|
"translation": "Модель данных",
|
|||
|
"definition": "An abstract representation of the structure of data, describing how data is organized and related to each other.",
|
|||
|
"synonyms": ["Data Structure", "Schema"],
|
|||
|
"examples": [
|
|||
|
"Our data model allows us to efficiently manage relationships between customers and orders.",
|
|||
|
"The data model was designed considering scalability and performance requirements.",
|
|||
|
"This data model is used for storing information about social network users."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 4,
|
|||
|
"word": "Regression",
|
|||
|
"translation": "Регрессия",
|
|||
|
"definition": "A statistical method used to determine the relationship between one variable and others.",
|
|||
|
"synonyms": ["Linear Regression", "Nonlinear Regression"],
|
|||
|
"examples": [
|
|||
|
"We applied linear regression to analyze the impact of advertising campaigns on sales.",
|
|||
|
"Results from the regression analysis showed a strong correlation between customer age and purchase frequency.",
|
|||
|
"Regression helped us assess how changes in environmental conditions affect crop yield."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 5,
|
|||
|
"word": "Clustering",
|
|||
|
"translation": "Кластеризация",
|
|||
|
"definition": "The process of grouping similar objects into clusters so that objects within the same cluster are more similar to each other than to those in other clusters.",
|
|||
|
"synonyms": ["Grouping", "Segmentation"],
|
|||
|
"examples": [
|
|||
|
"Clustering allowed us to divide customers into several groups according to their purchasing behavior.",
|
|||
|
"Clustering methods are used to automatically group news by topic.",
|
|||
|
"As a result of clustering, several market segments were identified, each with its own characteristics."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 6,
|
|||
|
"word": "Supervised Learning",
|
|||
|
"translation": "Обучение с учителем",
|
|||
|
"definition": "A type of machine learning where the algorithm learns from labeled data, meaning data for which correct answers are known.",
|
|||
|
"synonyms": ["Controlled Learning", "Labeled Classification"],
|
|||
|
"examples": [
|
|||
|
"Supervised learning is used to classify emails as spam or not-spam.",
|
|||
|
"This approach was used to create a model that predicts real estate prices based on multiple parameters.",
|
|||
|
"Supervised learning helps diagnose diseases at early stages through medical data analysis."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 7,
|
|||
|
"word": "Data Labeling",
|
|||
|
"translation": "Разметка данных",
|
|||
|
"definition": "The process of assigning labels or classes to data so it can be used in supervised learning.",
|
|||
|
"synonyms": ["Data Annotation", "Tagging"],
|
|||
|
"examples": [
|
|||
|
"Before starting model training, we labeled the data by assigning each photo an animal category.",
|
|||
|
"Data labeling includes marking user reviews as positive or negative.",
|
|||
|
"Text documents were labeled with special tags for subsequent analysis."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 8,
|
|||
|
"word": "Hyperparameters",
|
|||
|
"translation": "Гиперпараметры",
|
|||
|
"definition": "Parameters that define the structure and behavior of a machine learning model, set before the learning process begins.",
|
|||
|
"synonyms": ["Model Settings", "Configuration Parameters"],
|
|||
|
"examples": [
|
|||
|
"Optimizing hyperparameters enabled us to enhance the performance of our machine learning model.",
|
|||
|
"Hyperparameters include settings such as the number of layers in a neural network and the learning rate.",
|
|||
|
"Choosing the right hyperparameters is crucial for achieving high model accuracy."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"id": 9,
|
|||
|
"word": "Model Validation",
|
|||
|
"translation": "Валидация модели",
|
|||
|
"definition": "The process of evaluating the quality of a model by testing it on new, previously unseen data.",
|
|||
|
"synonyms": ["Model Testing", "Model Verification"],
|
|||
|
"examples": [
|
|||
|
"After completing the training, we validated the model using a test dataset.",
|
|||
|
"During model validation, its ability to make accurate predictions on new data is checked.",
|
|||
|
"Validation showed that the model is robust against changes in data and has low generalization error."
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
}
|
|||
|
]
|