Compare commits
2 Commits
10b5207f9a
...
2356259823
Author | SHA1 | Date | |
---|---|---|---|
2356259823 | |||
|
872c921a53 |
@ -42,6 +42,7 @@ app.use(require('./root'))
|
||||
/**
|
||||
* Добавляйте сюда свои routers.
|
||||
*/
|
||||
app.use('/kfu-m-24-1', require('./routers/kfu-m-24-1'))
|
||||
app.use('/epja-2024-1', require('./routers/epja-2024-1'))
|
||||
app.use('/todo', require('./routers/todo/routes'))
|
||||
app.use('/dogsitters-finder', require('./routers/dogsitters-finder'))
|
||||
|
@ -0,0 +1,12 @@
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"description": "1000 часто используемых",
|
||||
"imageFilename": "kart1.jpg"
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"description": "10 слов в Data Science",
|
||||
"imageFilename": "kart1.jpg"
|
||||
}
|
||||
]
|
@ -0,0 +1,150 @@
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"words": [
|
||||
{
|
||||
"id": 0,
|
||||
"word": "Tech",
|
||||
"definition": "short for technical, relating to the knowledge, machines, or methods used in science and industry. Tech is a whole industry, which includes IT",
|
||||
"examples": [
|
||||
"“As a DevOps engineer I have been working in Tech since 2020.”"
|
||||
],
|
||||
"synonyms": ["IT"]
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"word": "career path",
|
||||
"definition": "the series of jobs or roles that constitute a person's career, especially one in a particular field",
|
||||
"examples": [
|
||||
"“Technology is an evolving field with a variety of available career paths.”"
|
||||
],
|
||||
"synonyms": []
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"words": [
|
||||
{
|
||||
"id": 0,
|
||||
"word": "Machine Learning",
|
||||
"translation": "Машинное обучение",
|
||||
"definition": "An approach to artificial intelligence where computers learn from data without being explicitly programmed.",
|
||||
"synonyms": ["Trainable Algorithms", "Automated Learning"],
|
||||
"examples": [
|
||||
"We used machine learning techniques to forecast product demand.",
|
||||
"The movie recommendation system is based on machine learning algorithms.",
|
||||
"Machine learning helped improve the accuracy of speech recognition in our application."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"word": "Neural Network",
|
||||
"translation": "Нейронная сеть",
|
||||
"definition": "A mathematical model inspired by the structure and function of biological neural networks, consisting of interconnected nodes organized in layers that can process information.",
|
||||
"synonyms": ["Artificial Neural Network", "Deep Neural Network"],
|
||||
"examples": [
|
||||
"To process large amounts of data, we created a deep learning neural network.",
|
||||
"This neural network is capable of generating realistic images.",
|
||||
"Using neural networks significantly improved the quality of text translation."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"word": "Algorithm",
|
||||
"translation": "Алгоритм",
|
||||
"definition": "A step-by-step procedure or set of instructions for solving a problem or performing a computation.",
|
||||
"synonyms": ["Procedure", "Method"],
|
||||
"examples": [
|
||||
"The algorithm we developed quickly finds the optimal delivery route.",
|
||||
"This algorithm sorts an array with a minimal number of operations.",
|
||||
"Encryption algorithms ensure secure transmission of data over the internet."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"word": "Data Model",
|
||||
"translation": "Модель данных",
|
||||
"definition": "An abstract representation of the structure of data, describing how data is organized and related to each other.",
|
||||
"synonyms": ["Data Structure", "Schema"],
|
||||
"examples": [
|
||||
"Our data model allows us to efficiently manage relationships between customers and orders.",
|
||||
"The data model was designed considering scalability and performance requirements.",
|
||||
"This data model is used for storing information about social network users."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 4,
|
||||
"word": "Regression",
|
||||
"translation": "Регрессия",
|
||||
"definition": "A statistical method used to determine the relationship between one variable and others.",
|
||||
"synonyms": ["Linear Regression", "Nonlinear Regression"],
|
||||
"examples": [
|
||||
"We applied linear regression to analyze the impact of advertising campaigns on sales.",
|
||||
"Results from the regression analysis showed a strong correlation between customer age and purchase frequency.",
|
||||
"Regression helped us assess how changes in environmental conditions affect crop yield."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 5,
|
||||
"word": "Clustering",
|
||||
"translation": "Кластеризация",
|
||||
"definition": "The process of grouping similar objects into clusters so that objects within the same cluster are more similar to each other than to those in other clusters.",
|
||||
"synonyms": ["Grouping", "Segmentation"],
|
||||
"examples": [
|
||||
"Clustering allowed us to divide customers into several groups according to their purchasing behavior.",
|
||||
"Clustering methods are used to automatically group news by topic.",
|
||||
"As a result of clustering, several market segments were identified, each with its own characteristics."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 6,
|
||||
"word": "Supervised Learning",
|
||||
"translation": "Обучение с учителем",
|
||||
"definition": "A type of machine learning where the algorithm learns from labeled data, meaning data for which correct answers are known.",
|
||||
"synonyms": ["Controlled Learning", "Labeled Classification"],
|
||||
"examples": [
|
||||
"Supervised learning is used to classify emails as spam or not-spam.",
|
||||
"This approach was used to create a model that predicts real estate prices based on multiple parameters.",
|
||||
"Supervised learning helps diagnose diseases at early stages through medical data analysis."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 7,
|
||||
"word": "Data Labeling",
|
||||
"translation": "Разметка данных",
|
||||
"definition": "The process of assigning labels or classes to data so it can be used in supervised learning.",
|
||||
"synonyms": ["Data Annotation", "Tagging"],
|
||||
"examples": [
|
||||
"Before starting model training, we labeled the data by assigning each photo an animal category.",
|
||||
"Data labeling includes marking user reviews as positive or negative.",
|
||||
"Text documents were labeled with special tags for subsequent analysis."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 8,
|
||||
"word": "Hyperparameters",
|
||||
"translation": "Гиперпараметры",
|
||||
"definition": "Parameters that define the structure and behavior of a machine learning model, set before the learning process begins.",
|
||||
"synonyms": ["Model Settings", "Configuration Parameters"],
|
||||
"examples": [
|
||||
"Optimizing hyperparameters enabled us to enhance the performance of our machine learning model.",
|
||||
"Hyperparameters include settings such as the number of layers in a neural network and the learning rate.",
|
||||
"Choosing the right hyperparameters is crucial for achieving high model accuracy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": 9,
|
||||
"word": "Model Validation",
|
||||
"translation": "Валидация модели",
|
||||
"definition": "The process of evaluating the quality of a model by testing it on new, previously unseen data.",
|
||||
"synonyms": ["Model Testing", "Model Verification"],
|
||||
"examples": [
|
||||
"After completing the training, we validated the model using a test dataset.",
|
||||
"During model validation, its ability to make accurate predictions on new data is checked.",
|
||||
"Validation showed that the model is robust against changes in data and has low generalization error."
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
21
server/routers/kfu-m-24-1/eng-it-lean/dictionaries/index.js
Normal file
21
server/routers/kfu-m-24-1/eng-it-lean/dictionaries/index.js
Normal file
@ -0,0 +1,21 @@
|
||||
const router = require("express").Router();
|
||||
|
||||
module.exports = router;
|
||||
|
||||
const data = require("./data/dictionaries.json");
|
||||
const wordsData = require("./data/dictionaryWords.json");
|
||||
|
||||
router.get("/", (req, res) => {
|
||||
res.send(data);
|
||||
});
|
||||
|
||||
router.get("/:id", (req, res) => {
|
||||
const id = parseInt(req.params.id);
|
||||
const words = wordsData.find((word) => word.id === id);
|
||||
|
||||
if (!words) {
|
||||
return res.status(404).send("Not found");
|
||||
}
|
||||
|
||||
res.send(words);
|
||||
});
|
13
server/routers/kfu-m-24-1/eng-it-lean/index.js
Normal file
13
server/routers/kfu-m-24-1/eng-it-lean/index.js
Normal file
@ -0,0 +1,13 @@
|
||||
const router = require("express").Router();
|
||||
|
||||
const dictionariesRouter = require("./dictionaries");
|
||||
module.exports = router;
|
||||
|
||||
const delay =
|
||||
(ms = 1000) =>
|
||||
(req, res, next) => {
|
||||
setTimeout(next, ms);
|
||||
};
|
||||
|
||||
router.use(delay());
|
||||
router.use("/dictionaries", dictionariesRouter);
|
7
server/routers/kfu-m-24-1/index.js
Normal file
7
server/routers/kfu-m-24-1/index.js
Normal file
@ -0,0 +1,7 @@
|
||||
const { Router } = require('express')
|
||||
const router = Router()
|
||||
|
||||
router.use('/eng-it-lean', require('./eng-it-lean/index'))
|
||||
|
||||
module.exports = router
|
||||
|
Loading…
Reference in New Issue
Block a user