multy-stub/server/routers/kfu-m-24-1/eng-it-lean/gigachat/ai.js
Primakov Alexandr Alexandrovich 2925d0f17b fix eslint
2025-02-10 22:19:01 +03:00

6193 lines
194 KiB
JavaScript

/* eslint-disable no-empty */
/* eslint-disable no-async-promise-executor */
"use strict"
var __defProp = Object.defineProperty
var __getOwnPropDesc = Object.getOwnPropertyDescriptor
var __getOwnPropNames = Object.getOwnPropertyNames
var __hasOwnProp = Object.prototype.hasOwnProperty
var __export = (target, all) => {
for (var name14 in all)
__defProp(target, name14, { get: all[name14], enumerable: true })
}
var __copyProps = (to, from, except, desc) => {
if (from && typeof from === "object" || typeof from === "function") {
for (let key of __getOwnPropNames(from))
if (!__hasOwnProp.call(to, key) && key !== except)
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable })
}
return to
}
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod)
// streams/index.ts
var streams_exports = {}
__export(streams_exports, {
AISDKError: () => import_provider16.AISDKError,
APICallError: () => import_provider16.APICallError,
AssistantResponse: () => AssistantResponse,
DownloadError: () => DownloadError,
EmptyResponseBodyError: () => import_provider16.EmptyResponseBodyError,
InvalidArgumentError: () => InvalidArgumentError,
InvalidDataContentError: () => InvalidDataContentError,
InvalidMessageRoleError: () => InvalidMessageRoleError,
InvalidPromptError: () => import_provider16.InvalidPromptError,
InvalidResponseDataError: () => import_provider16.InvalidResponseDataError,
InvalidToolArgumentsError: () => InvalidToolArgumentsError,
JSONParseError: () => import_provider16.JSONParseError,
LangChainAdapter: () => langchain_adapter_exports,
LlamaIndexAdapter: () => llamaindex_adapter_exports,
LoadAPIKeyError: () => import_provider16.LoadAPIKeyError,
MessageConversionError: () => MessageConversionError,
NoContentGeneratedError: () => import_provider16.NoContentGeneratedError,
NoObjectGeneratedError: () => NoObjectGeneratedError,
NoOutputSpecifiedError: () => NoOutputSpecifiedError,
NoSuchModelError: () => import_provider16.NoSuchModelError,
NoSuchProviderError: () => NoSuchProviderError,
NoSuchToolError: () => NoSuchToolError,
Output: () => output_exports,
RetryError: () => RetryError,
StreamData: () => StreamData,
ToolCallRepairError: () => ToolCallRepairError,
ToolExecutionError: () => ToolExecutionError,
TypeValidationError: () => import_provider16.TypeValidationError,
UnsupportedFunctionalityError: () => import_provider16.UnsupportedFunctionalityError,
appendResponseMessages: () => appendResponseMessages,
convertToCoreMessages: () => convertToCoreMessages,
cosineSimilarity: () => cosineSimilarity,
createDataStream: () => createDataStream,
createDataStreamResponse: () => createDataStreamResponse,
createIdGenerator: () => import_provider_utils12.createIdGenerator,
embed: () => embed,
embedMany: () => embedMany,
experimental_createProviderRegistry: () => experimental_createProviderRegistry,
experimental_customProvider: () => experimental_customProvider,
experimental_generateImage: () => generateImage,
experimental_wrapLanguageModel: () => experimental_wrapLanguageModel,
formatAssistantStreamPart: () => import_ui_utils9.formatAssistantStreamPart,
formatDataStreamPart: () => import_ui_utils9.formatDataStreamPart,
generateId: () => import_provider_utils12.generateId,
generateObject: () => generateObject,
generateText: () => generateText,
jsonSchema: () => import_ui_utils9.jsonSchema,
parseAssistantStreamPart: () => import_ui_utils9.parseAssistantStreamPart,
parseDataStreamPart: () => import_ui_utils9.parseDataStreamPart,
pipeDataStreamToResponse: () => pipeDataStreamToResponse,
processDataStream: () => import_ui_utils9.processDataStream,
processTextStream: () => import_ui_utils9.processTextStream,
simulateReadableStream: () => simulateReadableStream,
smoothStream: () => smoothStream,
streamObject: () => streamObject,
streamText: () => streamText,
tool: () => tool
})
module.exports = __toCommonJS(streams_exports)
// core/index.ts
var import_provider_utils12 = require("@ai-sdk/provider-utils")
var import_ui_utils9 = require("@ai-sdk/ui-utils")
// core/data-stream/create-data-stream.ts
var import_ui_utils = require("@ai-sdk/ui-utils")
function createDataStream({
execute,
onError = () => "An error occurred."
// mask error messages for safety by default
}) {
let controller
const ongoingStreamPromises = []
const stream = new ReadableStream({
start(controllerArg) {
controller = controllerArg
}
})
function safeEnqueue(data) {
try {
controller.enqueue(data)
} catch (error) {
console.error(error)
}
}
try {
const result = execute({
writeData(data) {
safeEnqueue((0, import_ui_utils.formatDataStreamPart)("data", [data]))
},
writeMessageAnnotation(annotation) {
safeEnqueue((0, import_ui_utils.formatDataStreamPart)("message_annotations", [annotation]))
},
merge(streamArg) {
ongoingStreamPromises.push(
(async () => {
const reader = streamArg.getReader()
while (true) {
const { done, value } = await reader.read()
if (done)
break
safeEnqueue(value)
}
})().catch((error) => {
safeEnqueue((0, import_ui_utils.formatDataStreamPart)("error", onError(error)))
})
)
},
onError
})
if (result) {
ongoingStreamPromises.push(
result.catch((error) => {
safeEnqueue((0, import_ui_utils.formatDataStreamPart)("error", onError(error)))
})
)
}
} catch (error) {
safeEnqueue((0, import_ui_utils.formatDataStreamPart)("error", onError(error)))
}
const waitForStreams = new Promise(async (resolve) => {
while (ongoingStreamPromises.length > 0) {
await ongoingStreamPromises.shift()
}
resolve()
})
waitForStreams.finally(() => {
try {
controller.close()
} catch (error) {
console.error(error)
}
})
return stream
}
// core/util/prepare-response-headers.ts
function prepareResponseHeaders(headers, {
contentType,
dataStreamVersion
}) {
const responseHeaders = new Headers(headers != null ? headers : {})
if (!responseHeaders.has("Content-Type")) {
responseHeaders.set("Content-Type", contentType)
}
if (dataStreamVersion !== void 0) {
responseHeaders.set("X-Vercel-AI-Data-Stream", dataStreamVersion)
}
return responseHeaders
}
// core/data-stream/create-data-stream-response.ts
function createDataStreamResponse({
status,
statusText,
headers,
execute,
onError
}) {
return new Response(
createDataStream({ execute, onError }).pipeThrough(new TextEncoderStream()),
{
status,
statusText,
headers: prepareResponseHeaders(headers, {
contentType: "text/plain; charset=utf-8",
dataStreamVersion: "v1"
})
}
)
}
// core/util/prepare-outgoing-http-headers.ts
function prepareOutgoingHttpHeaders(headers, {
contentType,
dataStreamVersion
}) {
const outgoingHeaders = {}
if (headers != null) {
for (const [key, value] of Object.entries(headers)) {
outgoingHeaders[key] = value
}
}
if (outgoingHeaders["Content-Type"] == null) {
outgoingHeaders["Content-Type"] = contentType
}
if (dataStreamVersion !== void 0) {
outgoingHeaders["X-Vercel-AI-Data-Stream"] = dataStreamVersion
}
return outgoingHeaders
}
// core/util/write-to-server-response.ts
function writeToServerResponse({
response,
status,
statusText,
headers,
stream
}) {
response.writeHead(status != null ? status : 200, statusText, headers)
const reader = stream.getReader()
const read = async () => {
try {
while (true) {
const { done, value } = await reader.read()
if (done)
break
response.write(value)
}
} catch (error) {
console.error(error)
} finally {
response.end()
}
}
read()
}
// core/data-stream/pipe-data-stream-to-response.ts
function pipeDataStreamToResponse(response, {
status,
statusText,
headers,
execute,
onError
}) {
writeToServerResponse({
response,
status,
statusText,
headers: prepareOutgoingHttpHeaders(headers, {
contentType: "text/plain; charset=utf-8",
dataStreamVersion: "v1"
}),
stream: createDataStream({ execute, onError }).pipeThrough(
new TextEncoderStream()
)
})
}
// errors/invalid-argument-error.ts
var import_provider = require("@ai-sdk/provider")
var name = "AI_InvalidArgumentError"
var marker = `vercel.ai.error.${name}`
var symbol = Symbol.for(marker)
var _a
var InvalidArgumentError = class extends import_provider.AISDKError {
constructor({
parameter,
value,
message
}) {
super({
name,
message: `Invalid argument for parameter ${parameter}: ${message}`
})
this[_a] = true
this.parameter = parameter
this.value = value
}
static isInstance(error) {
return import_provider.AISDKError.hasMarker(error, marker)
}
}
_a = symbol
// util/retry-with-exponential-backoff.ts
var import_provider3 = require("@ai-sdk/provider")
var import_provider_utils = require("@ai-sdk/provider-utils")
// util/delay.ts
async function delay(delayInMs) {
return delayInMs == null ? Promise.resolve() : new Promise((resolve) => setTimeout(resolve, delayInMs))
}
// util/retry-error.ts
var import_provider2 = require("@ai-sdk/provider")
var name2 = "AI_RetryError"
var marker2 = `vercel.ai.error.${name2}`
var symbol2 = Symbol.for(marker2)
var _a2
var RetryError = class extends import_provider2.AISDKError {
constructor({
message,
reason,
errors
}) {
super({ name: name2, message })
this[_a2] = true
this.reason = reason
this.errors = errors
this.lastError = errors[errors.length - 1]
}
static isInstance(error) {
return import_provider2.AISDKError.hasMarker(error, marker2)
}
}
_a2 = symbol2
// util/retry-with-exponential-backoff.ts
var retryWithExponentialBackoff = ({
maxRetries = 2,
initialDelayInMs = 2e3,
backoffFactor = 2
} = {}) => async (f) => _retryWithExponentialBackoff(f, {
maxRetries,
delayInMs: initialDelayInMs,
backoffFactor
})
async function _retryWithExponentialBackoff(f, {
maxRetries,
delayInMs,
backoffFactor
}, errors = []) {
try {
return await f()
} catch (error) {
if ((0, import_provider_utils.isAbortError)(error)) {
throw error
}
if (maxRetries === 0) {
throw error
}
const errorMessage = (0, import_provider_utils.getErrorMessage)(error)
const newErrors = [...errors, error]
const tryNumber = newErrors.length
if (tryNumber > maxRetries) {
throw new RetryError({
message: `Failed after ${tryNumber} attempts. Last error: ${errorMessage}`,
reason: "maxRetriesExceeded",
errors: newErrors
})
}
if (error instanceof Error && import_provider3.APICallError.isInstance(error) && error.isRetryable === true && tryNumber <= maxRetries) {
await delay(delayInMs)
return _retryWithExponentialBackoff(
f,
{ maxRetries, delayInMs: backoffFactor * delayInMs, backoffFactor },
newErrors
)
}
if (tryNumber === 1) {
throw error
}
throw new RetryError({
message: `Failed after ${tryNumber} attempts with non-retryable error: '${errorMessage}'`,
reason: "errorNotRetryable",
errors: newErrors
})
}
}
// core/prompt/prepare-retries.ts
function prepareRetries({
maxRetries
}) {
if (maxRetries != null) {
if (!Number.isInteger(maxRetries)) {
throw new InvalidArgumentError({
parameter: "maxRetries",
value: maxRetries,
message: "maxRetries must be an integer"
})
}
if (maxRetries < 0) {
throw new InvalidArgumentError({
parameter: "maxRetries",
value: maxRetries,
message: "maxRetries must be >= 0"
})
}
}
const maxRetriesResult = maxRetries != null ? maxRetries : 2
return {
maxRetries: maxRetriesResult,
retry: retryWithExponentialBackoff({ maxRetries: maxRetriesResult })
}
}
// core/telemetry/assemble-operation-name.ts
function assembleOperationName({
operationId,
telemetry
}) {
return {
// standardized operation and resource name:
"operation.name": `${operationId}${(telemetry == null ? void 0 : telemetry.functionId) != null ? ` ${telemetry.functionId}` : ""}`,
"resource.name": telemetry == null ? void 0 : telemetry.functionId,
// detailed, AI SDK specific data:
"ai.operationId": operationId,
"ai.telemetry.functionId": telemetry == null ? void 0 : telemetry.functionId
}
}
// core/telemetry/get-base-telemetry-attributes.ts
function getBaseTelemetryAttributes({
model,
settings,
telemetry,
headers
}) {
var _a14
return {
"ai.model.provider": model.provider,
"ai.model.id": model.modelId,
// settings:
...Object.entries(settings).reduce((attributes, [key, value]) => {
attributes[`ai.settings.${key}`] = value
return attributes
}, {}),
// add metadata as attributes:
...Object.entries((_a14 = telemetry == null ? void 0 : telemetry.metadata) != null ? _a14 : {}).reduce(
(attributes, [key, value]) => {
attributes[`ai.telemetry.metadata.${key}`] = value
return attributes
},
{}
),
// request headers
...Object.entries(headers != null ? headers : {}).reduce((attributes, [key, value]) => {
if (value !== void 0) {
attributes[`ai.request.headers.${key}`] = value
}
return attributes
}, {})
}
}
// core/telemetry/get-tracer.ts
var import_api = require("@opentelemetry/api")
// core/telemetry/noop-tracer.ts
var noopTracer = {
startSpan() {
return noopSpan
},
startActiveSpan(name14, arg1, arg2, arg3) {
if (typeof arg1 === "function") {
return arg1(noopSpan)
}
if (typeof arg2 === "function") {
return arg2(noopSpan)
}
if (typeof arg3 === "function") {
return arg3(noopSpan)
}
}
}
var noopSpan = {
spanContext() {
return noopSpanContext
},
setAttribute() {
return this
},
setAttributes() {
return this
},
addEvent() {
return this
},
addLink() {
return this
},
addLinks() {
return this
},
setStatus() {
return this
},
updateName() {
return this
},
end() {
return this
},
isRecording() {
return false
},
recordException() {
return this
}
}
var noopSpanContext = {
traceId: "",
spanId: "",
traceFlags: 0
}
// core/telemetry/get-tracer.ts
function getTracer({
isEnabled = false,
tracer
} = {}) {
if (!isEnabled) {
return noopTracer
}
if (tracer) {
return tracer
}
return import_api.trace.getTracer("ai")
}
// core/telemetry/record-span.ts
var import_api2 = require("@opentelemetry/api")
function recordSpan({
name: name14,
tracer,
attributes,
fn,
endWhenDone = true
}) {
return tracer.startActiveSpan(name14, { attributes }, async (span) => {
try {
const result = await fn(span)
if (endWhenDone) {
span.end()
}
return result
} catch (error) {
try {
if (error instanceof Error) {
span.recordException({
name: error.name,
message: error.message,
stack: error.stack
})
span.setStatus({
code: import_api2.SpanStatusCode.ERROR,
message: error.message
})
} else {
span.setStatus({ code: import_api2.SpanStatusCode.ERROR })
}
} finally {
span.end()
}
throw error
}
})
}
// core/telemetry/select-telemetry-attributes.ts
function selectTelemetryAttributes({
telemetry,
attributes
}) {
if ((telemetry == null ? void 0 : telemetry.isEnabled) !== true) {
return {}
}
return Object.entries(attributes).reduce((attributes2, [key, value]) => {
if (value === void 0) {
return attributes2
}
if (typeof value === "object" && "input" in value && typeof value.input === "function") {
if ((telemetry == null ? void 0 : telemetry.recordInputs) === false) {
return attributes2
}
const result = value.input()
return result === void 0 ? attributes2 : { ...attributes2, [key]: result }
}
if (typeof value === "object" && "output" in value && typeof value.output === "function") {
if ((telemetry == null ? void 0 : telemetry.recordOutputs) === false) {
return attributes2
}
const result = value.output()
return result === void 0 ? attributes2 : { ...attributes2, [key]: result }
}
return { ...attributes2, [key]: value }
}, {})
}
// core/embed/embed.ts
async function embed({
model,
value,
maxRetries: maxRetriesArg,
abortSignal,
headers,
experimental_telemetry: telemetry
}) {
const { maxRetries, retry } = prepareRetries({ maxRetries: maxRetriesArg })
const baseTelemetryAttributes = getBaseTelemetryAttributes({
model,
telemetry,
headers,
settings: { maxRetries }
})
const tracer = getTracer(telemetry)
return recordSpan({
name: "ai.embed",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({ operationId: "ai.embed", telemetry }),
...baseTelemetryAttributes,
"ai.value": { input: () => JSON.stringify(value) }
}
}),
tracer,
fn: async (span) => {
const { embedding, usage, rawResponse } = await retry(
() => (
// nested spans to align with the embedMany telemetry data:
recordSpan({
name: "ai.embed.doEmbed",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.embed.doEmbed",
telemetry
}),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.values": { input: () => [JSON.stringify(value)] }
}
}),
tracer,
fn: async (doEmbedSpan) => {
var _a14
const modelResponse = await model.doEmbed({
values: [value],
abortSignal,
headers
})
const embedding2 = modelResponse.embeddings[0]
const usage2 = (_a14 = modelResponse.usage) != null ? _a14 : { tokens: NaN }
doEmbedSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.embeddings": {
output: () => modelResponse.embeddings.map(
(embedding3) => JSON.stringify(embedding3)
)
},
"ai.usage.tokens": usage2.tokens
}
})
)
return {
embedding: embedding2,
usage: usage2,
rawResponse: modelResponse.rawResponse
}
}
})
)
)
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.embedding": { output: () => JSON.stringify(embedding) },
"ai.usage.tokens": usage.tokens
}
})
)
return new DefaultEmbedResult({ value, embedding, usage, rawResponse })
}
})
}
var DefaultEmbedResult = class {
constructor(options) {
this.value = options.value
this.embedding = options.embedding
this.usage = options.usage
this.rawResponse = options.rawResponse
}
}
// core/util/split-array.ts
function splitArray(array, chunkSize) {
if (chunkSize <= 0) {
throw new Error("chunkSize must be greater than 0")
}
const result = []
for (let i = 0; i < array.length; i += chunkSize) {
result.push(array.slice(i, i + chunkSize))
}
return result
}
// core/embed/embed-many.ts
async function embedMany({
model,
values,
maxRetries: maxRetriesArg,
abortSignal,
headers,
experimental_telemetry: telemetry
}) {
const { maxRetries, retry } = prepareRetries({ maxRetries: maxRetriesArg })
const baseTelemetryAttributes = getBaseTelemetryAttributes({
model,
telemetry,
headers,
settings: { maxRetries }
})
const tracer = getTracer(telemetry)
return recordSpan({
name: "ai.embedMany",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({ operationId: "ai.embedMany", telemetry }),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.values": {
input: () => values.map((value) => JSON.stringify(value))
}
}
}),
tracer,
fn: async (span) => {
const maxEmbeddingsPerCall = model.maxEmbeddingsPerCall
if (maxEmbeddingsPerCall == null) {
const { embeddings: embeddings2, usage } = await retry(() => {
return recordSpan({
name: "ai.embedMany.doEmbed",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.embedMany.doEmbed",
telemetry
}),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.values": {
input: () => values.map((value) => JSON.stringify(value))
}
}
}),
tracer,
fn: async (doEmbedSpan) => {
var _a14
const modelResponse = await model.doEmbed({
values,
abortSignal,
headers
})
const embeddings3 = modelResponse.embeddings
const usage2 = (_a14 = modelResponse.usage) != null ? _a14 : { tokens: NaN }
doEmbedSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.embeddings": {
output: () => embeddings3.map((embedding) => JSON.stringify(embedding))
},
"ai.usage.tokens": usage2.tokens
}
})
)
return { embeddings: embeddings3, usage: usage2 }
}
})
})
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.embeddings": {
output: () => embeddings2.map((embedding) => JSON.stringify(embedding))
},
"ai.usage.tokens": usage.tokens
}
})
)
return new DefaultEmbedManyResult({ values, embeddings: embeddings2, usage })
}
const valueChunks = splitArray(values, maxEmbeddingsPerCall)
const embeddings = []
let tokens = 0
for (const chunk of valueChunks) {
const { embeddings: responseEmbeddings, usage } = await retry(() => {
return recordSpan({
name: "ai.embedMany.doEmbed",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.embedMany.doEmbed",
telemetry
}),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.values": {
input: () => chunk.map((value) => JSON.stringify(value))
}
}
}),
tracer,
fn: async (doEmbedSpan) => {
var _a14
const modelResponse = await model.doEmbed({
values: chunk,
abortSignal,
headers
})
const embeddings2 = modelResponse.embeddings
const usage2 = (_a14 = modelResponse.usage) != null ? _a14 : { tokens: NaN }
doEmbedSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.embeddings": {
output: () => embeddings2.map((embedding) => JSON.stringify(embedding))
},
"ai.usage.tokens": usage2.tokens
}
})
)
return { embeddings: embeddings2, usage: usage2 }
}
})
})
embeddings.push(...responseEmbeddings)
tokens += usage.tokens
}
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.embeddings": {
output: () => embeddings.map((embedding) => JSON.stringify(embedding))
},
"ai.usage.tokens": tokens
}
})
)
return new DefaultEmbedManyResult({
values,
embeddings,
usage: { tokens }
})
}
})
}
var DefaultEmbedManyResult = class {
constructor(options) {
this.values = options.values
this.embeddings = options.embeddings
this.usage = options.usage
}
}
// core/generate-image/generate-image.ts
var import_provider_utils2 = require("@ai-sdk/provider-utils")
async function generateImage({
model,
prompt,
n = 1,
size,
aspectRatio,
seed,
providerOptions,
maxRetries: maxRetriesArg,
abortSignal,
headers
}) {
var _a14
const { retry } = prepareRetries({ maxRetries: maxRetriesArg })
const maxImagesPerCall = (_a14 = model.maxImagesPerCall) != null ? _a14 : 1
const callCount = Math.ceil(n / maxImagesPerCall)
const callImageCounts = Array.from({ length: callCount }, (_, i) => {
if (i < callCount - 1) {
return maxImagesPerCall
}
const remainder = n % maxImagesPerCall
return remainder === 0 ? maxImagesPerCall : remainder
})
const results = await Promise.all(
callImageCounts.map(
async (callImageCount) => retry(
() => model.doGenerate({
prompt,
n: callImageCount,
abortSignal,
headers,
size,
aspectRatio,
seed,
providerOptions: providerOptions != null ? providerOptions : {}
})
)
)
)
const images = []
const warnings = []
for (const result of results) {
images.push(
...result.images.map((image) => new DefaultGeneratedImage({ image }))
)
warnings.push(...result.warnings)
}
return new DefaultGenerateImageResult({ images, warnings })
}
var DefaultGenerateImageResult = class {
constructor(options) {
this.images = options.images
this.warnings = options.warnings
}
get image() {
return this.images[0]
}
}
var DefaultGeneratedImage = class {
constructor({ image }) {
const isUint8Array = image instanceof Uint8Array
this.base64Data = isUint8Array ? void 0 : image
this.uint8ArrayData = isUint8Array ? image : void 0
}
// lazy conversion with caching to avoid unnecessary conversion overhead:
get base64() {
if (this.base64Data == null) {
this.base64Data = (0, import_provider_utils2.convertUint8ArrayToBase64)(this.uint8ArrayData)
}
return this.base64Data
}
// lazy conversion with caching to avoid unnecessary conversion overhead:
get uint8Array() {
if (this.uint8ArrayData == null) {
this.uint8ArrayData = (0, import_provider_utils2.convertBase64ToUint8Array)(this.base64Data)
}
return this.uint8ArrayData
}
}
// core/generate-object/generate-object.ts
var import_provider_utils6 = require("@ai-sdk/provider-utils")
// errors/no-object-generated-error.ts
var import_provider4 = require("@ai-sdk/provider")
var name3 = "AI_NoObjectGeneratedError"
var marker3 = `vercel.ai.error.${name3}`
var symbol3 = Symbol.for(marker3)
var _a3
var NoObjectGeneratedError = class extends import_provider4.AISDKError {
constructor({
message = "No object generated.",
cause,
text: text2,
response,
usage
}) {
super({ name: name3, message, cause })
this[_a3] = true
this.text = text2
this.response = response
this.usage = usage
}
static isInstance(error) {
return import_provider4.AISDKError.hasMarker(error, marker3)
}
}
_a3 = symbol3
// util/download-error.ts
var import_provider5 = require("@ai-sdk/provider")
var name4 = "AI_DownloadError"
var marker4 = `vercel.ai.error.${name4}`
var symbol4 = Symbol.for(marker4)
var _a4
var DownloadError = class extends import_provider5.AISDKError {
constructor({
url,
statusCode,
statusText,
cause,
message = cause == null ? `Failed to download ${url}: ${statusCode} ${statusText}` : `Failed to download ${url}: ${cause}`
}) {
super({ name: name4, message, cause })
this[_a4] = true
this.url = url
this.statusCode = statusCode
this.statusText = statusText
}
static isInstance(error) {
return import_provider5.AISDKError.hasMarker(error, marker4)
}
}
_a4 = symbol4
// util/download.ts
async function download({
url,
fetchImplementation = fetch
}) {
var _a14
const urlText = url.toString()
try {
const response = await fetchImplementation(urlText)
if (!response.ok) {
throw new DownloadError({
url: urlText,
statusCode: response.status,
statusText: response.statusText
})
}
return {
data: new Uint8Array(await response.arrayBuffer()),
mimeType: (_a14 = response.headers.get("content-type")) != null ? _a14 : void 0
}
} catch (error) {
if (DownloadError.isInstance(error)) {
throw error
}
throw new DownloadError({ url: urlText, cause: error })
}
}
// core/util/detect-image-mimetype.ts
var mimeTypeSignatures = [
{ mimeType: "image/gif", bytes: [71, 73, 70] },
{ mimeType: "image/png", bytes: [137, 80, 78, 71] },
{ mimeType: "image/jpeg", bytes: [255, 216] },
{ mimeType: "image/webp", bytes: [82, 73, 70, 70] }
]
function detectImageMimeType(image) {
for (const { bytes, mimeType } of mimeTypeSignatures) {
if (image.length >= bytes.length && bytes.every((byte, index) => image[index] === byte)) {
return mimeType
}
}
return void 0
}
// core/prompt/data-content.ts
var import_provider_utils3 = require("@ai-sdk/provider-utils")
// core/prompt/invalid-data-content-error.ts
var import_provider6 = require("@ai-sdk/provider")
var name5 = "AI_InvalidDataContentError"
var marker5 = `vercel.ai.error.${name5}`
var symbol5 = Symbol.for(marker5)
var _a5
var InvalidDataContentError = class extends import_provider6.AISDKError {
constructor({
content,
cause,
message = `Invalid data content. Expected a base64 string, Uint8Array, ArrayBuffer, or Buffer, but got ${typeof content}.`
}) {
super({ name: name5, message, cause })
this[_a5] = true
this.content = content
}
static isInstance(error) {
return import_provider6.AISDKError.hasMarker(error, marker5)
}
}
_a5 = symbol5
// core/prompt/data-content.ts
var import_zod = require("zod")
var dataContentSchema = import_zod.z.union([
import_zod.z.string(),
import_zod.z.instanceof(Uint8Array),
import_zod.z.instanceof(ArrayBuffer),
import_zod.z.custom(
// Buffer might not be available in some environments such as CloudFlare:
(value) => {
var _a14, _b
return (_b = (_a14 = globalThis.Buffer) == null ? void 0 : _a14.isBuffer(value)) != null ? _b : false
},
{ message: "Must be a Buffer" }
)
])
function convertDataContentToBase64String(content) {
if (typeof content === "string") {
return content
}
if (content instanceof ArrayBuffer) {
return (0, import_provider_utils3.convertUint8ArrayToBase64)(new Uint8Array(content))
}
return (0, import_provider_utils3.convertUint8ArrayToBase64)(content)
}
function convertDataContentToUint8Array(content) {
if (content instanceof Uint8Array) {
return content
}
if (typeof content === "string") {
try {
return (0, import_provider_utils3.convertBase64ToUint8Array)(content)
} catch (error) {
throw new InvalidDataContentError({
message: "Invalid data content. Content string is not a base64-encoded media.",
content,
cause: error
})
}
}
if (content instanceof ArrayBuffer) {
return new Uint8Array(content)
}
throw new InvalidDataContentError({ content })
}
function convertUint8ArrayToText(uint8Array) {
try {
return new TextDecoder().decode(uint8Array)
} catch (error) {
throw new Error("Error decoding Uint8Array to text")
}
}
// core/prompt/invalid-message-role-error.ts
var import_provider7 = require("@ai-sdk/provider")
var name6 = "AI_InvalidMessageRoleError"
var marker6 = `vercel.ai.error.${name6}`
var symbol6 = Symbol.for(marker6)
var _a6
var InvalidMessageRoleError = class extends import_provider7.AISDKError {
constructor({
role,
message = `Invalid message role: '${role}'. Must be one of: "system", "user", "assistant", "tool".`
}) {
super({ name: name6, message })
this[_a6] = true
this.role = role
}
static isInstance(error) {
return import_provider7.AISDKError.hasMarker(error, marker6)
}
}
_a6 = symbol6
// core/prompt/split-data-url.ts
function splitDataUrl(dataUrl) {
try {
const [header, base64Content] = dataUrl.split(",")
return {
mimeType: header.split(";")[0].split(":")[1],
base64Content
}
} catch (error) {
return {
mimeType: void 0,
base64Content: void 0
}
}
}
// core/prompt/convert-to-language-model-prompt.ts
async function convertToLanguageModelPrompt({
prompt,
modelSupportsImageUrls = true,
modelSupportsUrl = () => false,
downloadImplementation = download
}) {
const downloadedAssets = await downloadAssets(
prompt.messages,
downloadImplementation,
modelSupportsImageUrls,
modelSupportsUrl
)
return [
...prompt.system != null ? [{ role: "system", content: prompt.system }] : [],
...prompt.messages.map(
(message) => convertToLanguageModelMessage(message, downloadedAssets)
)
]
}
function convertToLanguageModelMessage(message, downloadedAssets) {
const role = message.role
switch (role) {
case "system": {
return {
role: "system",
content: message.content,
providerMetadata: message.experimental_providerMetadata
}
}
case "user": {
if (typeof message.content === "string") {
return {
role: "user",
content: [{ type: "text", text: message.content }],
providerMetadata: message.experimental_providerMetadata
}
}
return {
role: "user",
content: message.content.map((part) => convertPartToLanguageModelPart(part, downloadedAssets)).filter((part) => part.type !== "text" || part.text !== ""),
providerMetadata: message.experimental_providerMetadata
}
}
case "assistant": {
if (typeof message.content === "string") {
return {
role: "assistant",
content: [{ type: "text", text: message.content }],
providerMetadata: message.experimental_providerMetadata
}
}
return {
role: "assistant",
content: message.content.filter(
// remove empty text parts:
(part) => part.type !== "text" || part.text !== ""
).map((part) => {
const { experimental_providerMetadata, ...rest } = part
return {
...rest,
providerMetadata: experimental_providerMetadata
}
}),
providerMetadata: message.experimental_providerMetadata
}
}
case "tool": {
return {
role: "tool",
content: message.content.map((part) => ({
type: "tool-result",
toolCallId: part.toolCallId,
toolName: part.toolName,
result: part.result,
content: part.experimental_content,
isError: part.isError,
providerMetadata: part.experimental_providerMetadata
})),
providerMetadata: message.experimental_providerMetadata
}
}
default: {
const _exhaustiveCheck = role
throw new InvalidMessageRoleError({ role: _exhaustiveCheck })
}
}
}
async function downloadAssets(messages, downloadImplementation, modelSupportsImageUrls, modelSupportsUrl) {
const urls = messages.filter((message) => message.role === "user").map((message) => message.content).filter(
(content) => Array.isArray(content)
).flat().filter(
(part) => part.type === "image" || part.type === "file"
).filter(
(part) => !(part.type === "image" && modelSupportsImageUrls === true)
).map((part) => part.type === "image" ? part.image : part.data).map(
(part) => (
// support string urls:
typeof part === "string" && (part.startsWith("http:") || part.startsWith("https:")) ? new URL(part) : part
)
).filter((image) => image instanceof URL).filter((url) => !modelSupportsUrl(url))
const downloadedImages = await Promise.all(
urls.map(async (url) => ({
url,
data: await downloadImplementation({ url })
}))
)
return Object.fromEntries(
downloadedImages.map(({ url, data }) => [url.toString(), data])
)
}
function convertPartToLanguageModelPart(part, downloadedAssets) {
var _a14
if (part.type === "text") {
return {
type: "text",
text: part.text,
providerMetadata: part.experimental_providerMetadata
}
}
let mimeType = part.mimeType
let data
let content
let normalizedData
const type = part.type
switch (type) {
case "image":
data = part.image
break
case "file":
data = part.data
break
default:
throw new Error(`Unsupported part type: ${type}`)
}
try {
content = typeof data === "string" ? new URL(data) : data
} catch (error) {
content = data
}
if (content instanceof URL) {
if (content.protocol === "data:") {
const { mimeType: dataUrlMimeType, base64Content } = splitDataUrl(
content.toString()
)
if (dataUrlMimeType == null || base64Content == null) {
throw new Error(`Invalid data URL format in part ${type}`)
}
mimeType = dataUrlMimeType
normalizedData = convertDataContentToUint8Array(base64Content)
} else {
const downloadedFile = downloadedAssets[content.toString()]
if (downloadedFile) {
normalizedData = downloadedFile.data
mimeType != null ? mimeType : mimeType = downloadedFile.mimeType
} else {
normalizedData = content
}
}
} else {
normalizedData = convertDataContentToUint8Array(content)
}
switch (type) {
case "image": {
if (normalizedData instanceof Uint8Array) {
mimeType = (_a14 = detectImageMimeType(normalizedData)) != null ? _a14 : mimeType
}
return {
type: "image",
image: normalizedData,
mimeType,
providerMetadata: part.experimental_providerMetadata
}
}
case "file": {
if (mimeType == null) {
throw new Error(`Mime type is missing for file part`)
}
return {
type: "file",
data: normalizedData instanceof Uint8Array ? convertDataContentToBase64String(normalizedData) : normalizedData,
mimeType,
providerMetadata: part.experimental_providerMetadata
}
}
}
}
// core/prompt/prepare-call-settings.ts
function prepareCallSettings({
maxTokens,
temperature,
topP,
topK,
presencePenalty,
frequencyPenalty,
stopSequences,
seed
}) {
if (maxTokens != null) {
if (!Number.isInteger(maxTokens)) {
throw new InvalidArgumentError({
parameter: "maxTokens",
value: maxTokens,
message: "maxTokens must be an integer"
})
}
if (maxTokens < 1) {
throw new InvalidArgumentError({
parameter: "maxTokens",
value: maxTokens,
message: "maxTokens must be >= 1"
})
}
}
if (temperature != null) {
if (typeof temperature !== "number") {
throw new InvalidArgumentError({
parameter: "temperature",
value: temperature,
message: "temperature must be a number"
})
}
}
if (topP != null) {
if (typeof topP !== "number") {
throw new InvalidArgumentError({
parameter: "topP",
value: topP,
message: "topP must be a number"
})
}
}
if (topK != null) {
if (typeof topK !== "number") {
throw new InvalidArgumentError({
parameter: "topK",
value: topK,
message: "topK must be a number"
})
}
}
if (presencePenalty != null) {
if (typeof presencePenalty !== "number") {
throw new InvalidArgumentError({
parameter: "presencePenalty",
value: presencePenalty,
message: "presencePenalty must be a number"
})
}
}
if (frequencyPenalty != null) {
if (typeof frequencyPenalty !== "number") {
throw new InvalidArgumentError({
parameter: "frequencyPenalty",
value: frequencyPenalty,
message: "frequencyPenalty must be a number"
})
}
}
if (seed != null) {
if (!Number.isInteger(seed)) {
throw new InvalidArgumentError({
parameter: "seed",
value: seed,
message: "seed must be an integer"
})
}
}
return {
maxTokens,
temperature: temperature != null ? temperature : 0,
topP,
topK,
presencePenalty,
frequencyPenalty,
stopSequences: stopSequences != null && stopSequences.length > 0 ? stopSequences : void 0,
seed
}
}
// core/prompt/standardize-prompt.ts
var import_provider9 = require("@ai-sdk/provider")
var import_provider_utils4 = require("@ai-sdk/provider-utils")
var import_zod7 = require("zod")
// core/prompt/message.ts
var import_zod6 = require("zod")
// core/types/provider-metadata.ts
var import_zod3 = require("zod")
// core/types/json-value.ts
var import_zod2 = require("zod")
var jsonValueSchema = import_zod2.z.lazy(
() => import_zod2.z.union([
import_zod2.z.null(),
import_zod2.z.string(),
import_zod2.z.number(),
import_zod2.z.boolean(),
import_zod2.z.record(import_zod2.z.string(), jsonValueSchema),
import_zod2.z.array(jsonValueSchema)
])
)
// core/types/provider-metadata.ts
var providerMetadataSchema = import_zod3.z.record(
import_zod3.z.string(),
import_zod3.z.record(import_zod3.z.string(), jsonValueSchema)
)
// core/prompt/content-part.ts
var import_zod5 = require("zod")
// core/prompt/tool-result-content.ts
var import_zod4 = require("zod")
var toolResultContentSchema = import_zod4.z.array(
import_zod4.z.union([
import_zod4.z.object({ type: import_zod4.z.literal("text"), text: import_zod4.z.string() }),
import_zod4.z.object({
type: import_zod4.z.literal("image"),
data: import_zod4.z.string(),
mimeType: import_zod4.z.string().optional()
})
])
)
// core/prompt/content-part.ts
var textPartSchema = import_zod5.z.object({
type: import_zod5.z.literal("text"),
text: import_zod5.z.string(),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var imagePartSchema = import_zod5.z.object({
type: import_zod5.z.literal("image"),
image: import_zod5.z.union([dataContentSchema, import_zod5.z.instanceof(URL)]),
mimeType: import_zod5.z.string().optional(),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var filePartSchema = import_zod5.z.object({
type: import_zod5.z.literal("file"),
data: import_zod5.z.union([dataContentSchema, import_zod5.z.instanceof(URL)]),
mimeType: import_zod5.z.string(),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var toolCallPartSchema = import_zod5.z.object({
type: import_zod5.z.literal("tool-call"),
toolCallId: import_zod5.z.string(),
toolName: import_zod5.z.string(),
args: import_zod5.z.unknown()
})
var toolResultPartSchema = import_zod5.z.object({
type: import_zod5.z.literal("tool-result"),
toolCallId: import_zod5.z.string(),
toolName: import_zod5.z.string(),
result: import_zod5.z.unknown(),
content: toolResultContentSchema.optional(),
isError: import_zod5.z.boolean().optional(),
experimental_providerMetadata: providerMetadataSchema.optional()
})
// core/prompt/message.ts
var coreSystemMessageSchema = import_zod6.z.object({
role: import_zod6.z.literal("system"),
content: import_zod6.z.string(),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var coreUserMessageSchema = import_zod6.z.object({
role: import_zod6.z.literal("user"),
content: import_zod6.z.union([
import_zod6.z.string(),
import_zod6.z.array(import_zod6.z.union([textPartSchema, imagePartSchema, filePartSchema]))
]),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var coreAssistantMessageSchema = import_zod6.z.object({
role: import_zod6.z.literal("assistant"),
content: import_zod6.z.union([
import_zod6.z.string(),
import_zod6.z.array(import_zod6.z.union([textPartSchema, toolCallPartSchema]))
]),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var coreToolMessageSchema = import_zod6.z.object({
role: import_zod6.z.literal("tool"),
content: import_zod6.z.array(toolResultPartSchema),
experimental_providerMetadata: providerMetadataSchema.optional()
})
var coreMessageSchema = import_zod6.z.union([
coreSystemMessageSchema,
coreUserMessageSchema,
coreAssistantMessageSchema,
coreToolMessageSchema
])
// core/prompt/detect-prompt-type.ts
function detectPromptType(prompt) {
if (!Array.isArray(prompt)) {
return "other"
}
if (prompt.length === 0) {
return "messages"
}
const characteristics = prompt.map(detectSingleMessageCharacteristics)
if (characteristics.some((c) => c === "has-ui-specific-parts")) {
return "ui-messages"
} else if (characteristics.every(
(c) => c === "has-core-specific-parts" || c === "message"
)) {
return "messages"
} else {
return "other"
}
}
function detectSingleMessageCharacteristics(message) {
if (typeof message === "object" && message !== null && (message.role === "function" || // UI-only role
message.role === "data" || // UI-only role
"toolInvocations" in message || // UI-specific field
"experimental_attachments" in message)) {
return "has-ui-specific-parts"
} else if (typeof message === "object" && message !== null && "content" in message && (Array.isArray(message.content) || // Core messages can have array content
"experimental_providerMetadata" in message)) {
return "has-core-specific-parts"
} else if (typeof message === "object" && message !== null && "role" in message && "content" in message && typeof message.content === "string" && ["system", "user", "assistant", "tool"].includes(message.role)) {
return "message"
} else {
return "other"
}
}
// core/prompt/attachments-to-parts.ts
function attachmentsToParts(attachments) {
var _a14, _b, _c
const parts = []
for (const attachment of attachments) {
let url
try {
url = new URL(attachment.url)
} catch (error) {
throw new Error(`Invalid URL: ${attachment.url}`)
}
switch (url.protocol) {
case "http:":
case "https:": {
if ((_a14 = attachment.contentType) == null ? void 0 : _a14.startsWith("image/")) {
parts.push({ type: "image", image: url })
} else {
if (!attachment.contentType) {
throw new Error(
"If the attachment is not an image, it must specify a content type"
)
}
parts.push({
type: "file",
data: url,
mimeType: attachment.contentType
})
}
break
}
case "data:": {
let header
let base64Content
let mimeType
try {
[header, base64Content] = attachment.url.split(",")
mimeType = header.split(";")[0].split(":")[1]
} catch (error) {
throw new Error(`Error processing data URL: ${attachment.url}`)
}
if (mimeType == null || base64Content == null) {
throw new Error(`Invalid data URL format: ${attachment.url}`)
}
if ((_b = attachment.contentType) == null ? void 0 : _b.startsWith("image/")) {
parts.push({
type: "image",
image: convertDataContentToUint8Array(base64Content)
})
} else if ((_c = attachment.contentType) == null ? void 0 : _c.startsWith("text/")) {
parts.push({
type: "text",
text: convertUint8ArrayToText(
convertDataContentToUint8Array(base64Content)
)
})
} else {
if (!attachment.contentType) {
throw new Error(
"If the attachment is not an image or text, it must specify a content type"
)
}
parts.push({
type: "file",
data: base64Content,
mimeType: attachment.contentType
})
}
break
}
default: {
throw new Error(`Unsupported URL protocol: ${url.protocol}`)
}
}
}
return parts
}
// core/prompt/message-conversion-error.ts
var import_provider8 = require("@ai-sdk/provider")
var name7 = "AI_MessageConversionError"
var marker7 = `vercel.ai.error.${name7}`
var symbol7 = Symbol.for(marker7)
var _a7
var MessageConversionError = class extends import_provider8.AISDKError {
constructor({
originalMessage,
message
}) {
super({ name: name7, message })
this[_a7] = true
this.originalMessage = originalMessage
}
static isInstance(error) {
return import_provider8.AISDKError.hasMarker(error, marker7)
}
}
_a7 = symbol7
// core/prompt/convert-to-core-messages.ts
function convertToCoreMessages(messages, options) {
var _a14
const tools = (_a14 = options == null ? void 0 : options.tools) != null ? _a14 : {}
const coreMessages = []
for (const message of messages) {
const { role, content, toolInvocations, experimental_attachments } = message
switch (role) {
case "system": {
coreMessages.push({
role: "system",
content
})
break
}
case "user": {
coreMessages.push({
role: "user",
content: experimental_attachments ? [
{ type: "text", text: content },
...attachmentsToParts(experimental_attachments)
] : content
})
break
}
case "assistant": {
if (toolInvocations == null || toolInvocations.length === 0) {
coreMessages.push({ role: "assistant", content })
break
}
coreMessages.push({
role: "assistant",
content: [
{ type: "text", text: content },
...toolInvocations.map(
({ toolCallId, toolName, args }) => ({
type: "tool-call",
toolCallId,
toolName,
args
})
)
]
})
coreMessages.push({
role: "tool",
content: toolInvocations.map((toolInvocation) => {
if (!("result" in toolInvocation)) {
throw new MessageConversionError({
originalMessage: message,
message: "ToolInvocation must have a result: " + JSON.stringify(toolInvocation)
})
}
const { toolCallId, toolName, result } = toolInvocation
const tool2 = tools[toolName]
return (tool2 == null ? void 0 : tool2.experimental_toToolResultContent) != null ? {
type: "tool-result",
toolCallId,
toolName,
result: tool2.experimental_toToolResultContent(result),
experimental_content: tool2.experimental_toToolResultContent(result)
} : {
type: "tool-result",
toolCallId,
toolName,
result
}
})
})
break
}
case "data": {
break
}
default: {
const _exhaustiveCheck = role
throw new MessageConversionError({
originalMessage: message,
message: `Unsupported role: ${_exhaustiveCheck}`
})
}
}
}
return coreMessages
}
// core/prompt/standardize-prompt.ts
function standardizePrompt({
prompt,
tools
}) {
if (prompt.prompt == null && prompt.messages == null) {
throw new import_provider9.InvalidPromptError({
prompt,
message: "prompt or messages must be defined"
})
}
if (prompt.prompt != null && prompt.messages != null) {
throw new import_provider9.InvalidPromptError({
prompt,
message: "prompt and messages cannot be defined at the same time"
})
}
if (prompt.system != null && typeof prompt.system !== "string") {
throw new import_provider9.InvalidPromptError({
prompt,
message: "system must be a string"
})
}
if (prompt.prompt != null) {
if (typeof prompt.prompt !== "string") {
throw new import_provider9.InvalidPromptError({
prompt,
message: "prompt must be a string"
})
}
return {
type: "prompt",
system: prompt.system,
messages: [
{
role: "user",
content: prompt.prompt
}
]
}
}
if (prompt.messages != null) {
const promptType = detectPromptType(prompt.messages)
if (promptType === "other") {
throw new import_provider9.InvalidPromptError({
prompt,
message: "messages must be an array of CoreMessage or UIMessage"
})
}
const messages = promptType === "ui-messages" ? convertToCoreMessages(prompt.messages, {
tools
}) : prompt.messages
const validationResult = (0, import_provider_utils4.safeValidateTypes)({
value: messages,
schema: import_zod7.z.array(coreMessageSchema)
})
if (!validationResult.success) {
throw new import_provider9.InvalidPromptError({
prompt,
message: "messages must be an array of CoreMessage or UIMessage",
cause: validationResult.error
})
}
return {
type: "messages",
messages,
system: prompt.system
}
}
throw new Error("unreachable")
}
// core/types/usage.ts
function calculateLanguageModelUsage({
promptTokens,
completionTokens
}) {
return {
promptTokens,
completionTokens,
totalTokens: promptTokens + completionTokens
}
}
function addLanguageModelUsage(usage1, usage2) {
return {
promptTokens: usage1.promptTokens + usage2.promptTokens,
completionTokens: usage1.completionTokens + usage2.completionTokens,
totalTokens: usage1.totalTokens + usage2.totalTokens
}
}
// core/generate-object/inject-json-instruction.ts
var DEFAULT_SCHEMA_PREFIX = "JSON schema:"
var DEFAULT_SCHEMA_SUFFIX = "You MUST answer with a JSON object that matches the JSON schema above."
var DEFAULT_GENERIC_SUFFIX = "You MUST answer with JSON."
function injectJsonInstruction({
prompt,
schema,
schemaPrefix = schema != null ? DEFAULT_SCHEMA_PREFIX : void 0,
schemaSuffix = schema != null ? DEFAULT_SCHEMA_SUFFIX : DEFAULT_GENERIC_SUFFIX
}) {
return [
prompt != null && prompt.length > 0 ? prompt : void 0,
prompt != null && prompt.length > 0 ? "" : void 0,
// add a newline if prompt is not null
schemaPrefix,
schema != null ? JSON.stringify(schema) : void 0,
schemaSuffix
].filter((line) => line != null).join("\n")
}
// core/generate-object/output-strategy.ts
var import_provider10 = require("@ai-sdk/provider")
var import_provider_utils5 = require("@ai-sdk/provider-utils")
var import_ui_utils2 = require("@ai-sdk/ui-utils")
// core/util/async-iterable-stream.ts
function createAsyncIterableStream(source) {
const stream = source.pipeThrough(new TransformStream())
stream[Symbol.asyncIterator] = () => {
const reader = stream.getReader()
return {
async next() {
const { done, value } = await reader.read()
return done ? { done: true, value: void 0 } : { done: false, value }
}
}
}
return stream
}
// core/generate-object/output-strategy.ts
var noSchemaOutputStrategy = {
type: "no-schema",
jsonSchema: void 0,
validatePartialResult({ value, textDelta }) {
return { success: true, value: { partial: value, textDelta } }
},
validateFinalResult(value, context) {
return value === void 0 ? {
success: false,
error: new NoObjectGeneratedError({
message: "No object generated: response did not match schema.",
text: context.text,
response: context.response,
usage: context.usage
})
} : { success: true, value }
},
createElementStream() {
throw new import_provider10.UnsupportedFunctionalityError({
functionality: "element streams in no-schema mode"
})
}
}
var objectOutputStrategy = (schema) => ({
type: "object",
jsonSchema: schema.jsonSchema,
validatePartialResult({ value, textDelta }) {
return {
success: true,
value: {
// Note: currently no validation of partial results:
partial: value,
textDelta
}
}
},
validateFinalResult(value) {
return (0, import_provider_utils5.safeValidateTypes)({ value, schema })
},
createElementStream() {
throw new import_provider10.UnsupportedFunctionalityError({
functionality: "element streams in object mode"
})
}
})
var arrayOutputStrategy = (schema) => {
const { $schema, ...itemSchema } = schema.jsonSchema
return {
type: "enum",
// wrap in object that contains array of elements, since most LLMs will not
// be able to generate an array directly:
// possible future optimization: use arrays directly when model supports grammar-guided generation
jsonSchema: {
$schema: "https://json-schema.org/draft/2019-09/schema#",
type: "object",
properties: {
elements: { type: "array", items: itemSchema }
},
required: ["elements"],
additionalProperties: false
},
validatePartialResult({ value, latestObject, isFirstDelta, isFinalDelta }) {
var _a14
if (!(0, import_provider10.isJSONObject)(value) || !(0, import_provider10.isJSONArray)(value.elements)) {
return {
success: false,
error: new import_provider10.TypeValidationError({
value,
cause: "value must be an object that contains an array of elements"
})
}
}
const inputArray = value.elements
const resultArray = []
for (let i = 0; i < inputArray.length; i++) {
const element = inputArray[i]
const result = (0, import_provider_utils5.safeValidateTypes)({ value: element, schema })
if (i === inputArray.length - 1 && !isFinalDelta) {
continue
}
if (!result.success) {
return result
}
resultArray.push(result.value)
}
const publishedElementCount = (_a14 = latestObject == null ? void 0 : latestObject.length) != null ? _a14 : 0
let textDelta = ""
if (isFirstDelta) {
textDelta += "["
}
if (publishedElementCount > 0) {
textDelta += ","
}
textDelta += resultArray.slice(publishedElementCount).map((element) => JSON.stringify(element)).join(",")
if (isFinalDelta) {
textDelta += "]"
}
return {
success: true,
value: {
partial: resultArray,
textDelta
}
}
},
validateFinalResult(value) {
if (!(0, import_provider10.isJSONObject)(value) || !(0, import_provider10.isJSONArray)(value.elements)) {
return {
success: false,
error: new import_provider10.TypeValidationError({
value,
cause: "value must be an object that contains an array of elements"
})
}
}
const inputArray = value.elements
for (const element of inputArray) {
const result = (0, import_provider_utils5.safeValidateTypes)({ value: element, schema })
if (!result.success) {
return result
}
}
return { success: true, value: inputArray }
},
createElementStream(originalStream) {
let publishedElements = 0
return createAsyncIterableStream(
originalStream.pipeThrough(
new TransformStream({
transform(chunk, controller) {
switch (chunk.type) {
case "object": {
const array = chunk.object
for (; publishedElements < array.length; publishedElements++) {
controller.enqueue(array[publishedElements])
}
break
}
case "text-delta":
case "finish":
break
case "error":
controller.error(chunk.error)
break
default: {
const _exhaustiveCheck = chunk
throw new Error(
`Unsupported chunk type: ${_exhaustiveCheck}`
)
}
}
}
})
)
)
}
}
}
var enumOutputStrategy = (enumValues) => {
return {
type: "enum",
// wrap in object that contains result, since most LLMs will not
// be able to generate an enum value directly:
// possible future optimization: use enums directly when model supports top-level enums
jsonSchema: {
$schema: "https://json-schema.org/draft/2019-09/schema#",
type: "object",
properties: {
result: { type: "string", enum: enumValues }
},
required: ["result"],
additionalProperties: false
},
validateFinalResult(value) {
if (!(0, import_provider10.isJSONObject)(value) || typeof value.result !== "string") {
return {
success: false,
error: new import_provider10.TypeValidationError({
value,
cause: 'value must be an object that contains a string in the "result" property.'
})
}
}
const result = value.result
return enumValues.includes(result) ? { success: true, value: result } : {
success: false,
error: new import_provider10.TypeValidationError({
value,
cause: "value must be a string in the enum"
})
}
},
validatePartialResult() {
throw new import_provider10.UnsupportedFunctionalityError({
functionality: "partial results in enum mode"
})
},
createElementStream() {
throw new import_provider10.UnsupportedFunctionalityError({
functionality: "element streams in enum mode"
})
}
}
}
function getOutputStrategy({
output,
schema,
enumValues
}) {
switch (output) {
case "object":
return objectOutputStrategy((0, import_ui_utils2.asSchema)(schema))
case "array":
return arrayOutputStrategy((0, import_ui_utils2.asSchema)(schema))
case "enum":
return enumOutputStrategy(enumValues)
case "no-schema":
return noSchemaOutputStrategy
default: {
const _exhaustiveCheck = output
throw new Error(`Unsupported output: ${_exhaustiveCheck}`)
}
}
}
// core/generate-object/validate-object-generation-input.ts
function validateObjectGenerationInput({
output,
mode,
schema,
schemaName,
schemaDescription,
enumValues
}) {
if (output != null && output !== "object" && output !== "array" && output !== "enum" && output !== "no-schema") {
throw new InvalidArgumentError({
parameter: "output",
value: output,
message: "Invalid output type."
})
}
if (output === "no-schema") {
if (mode === "auto" || mode === "tool") {
throw new InvalidArgumentError({
parameter: "mode",
value: mode,
message: 'Mode must be "json" for no-schema output.'
})
}
if (schema != null) {
throw new InvalidArgumentError({
parameter: "schema",
value: schema,
message: "Schema is not supported for no-schema output."
})
}
if (schemaDescription != null) {
throw new InvalidArgumentError({
parameter: "schemaDescription",
value: schemaDescription,
message: "Schema description is not supported for no-schema output."
})
}
if (schemaName != null) {
throw new InvalidArgumentError({
parameter: "schemaName",
value: schemaName,
message: "Schema name is not supported for no-schema output."
})
}
if (enumValues != null) {
throw new InvalidArgumentError({
parameter: "enumValues",
value: enumValues,
message: "Enum values are not supported for no-schema output."
})
}
}
if (output === "object") {
if (schema == null) {
throw new InvalidArgumentError({
parameter: "schema",
value: schema,
message: "Schema is required for object output."
})
}
if (enumValues != null) {
throw new InvalidArgumentError({
parameter: "enumValues",
value: enumValues,
message: "Enum values are not supported for object output."
})
}
}
if (output === "array") {
if (schema == null) {
throw new InvalidArgumentError({
parameter: "schema",
value: schema,
message: "Element schema is required for array output."
})
}
if (enumValues != null) {
throw new InvalidArgumentError({
parameter: "enumValues",
value: enumValues,
message: "Enum values are not supported for array output."
})
}
}
if (output === "enum") {
if (schema != null) {
throw new InvalidArgumentError({
parameter: "schema",
value: schema,
message: "Schema is not supported for enum output."
})
}
if (schemaDescription != null) {
throw new InvalidArgumentError({
parameter: "schemaDescription",
value: schemaDescription,
message: "Schema description is not supported for enum output."
})
}
if (schemaName != null) {
throw new InvalidArgumentError({
parameter: "schemaName",
value: schemaName,
message: "Schema name is not supported for enum output."
})
}
if (enumValues == null) {
throw new InvalidArgumentError({
parameter: "enumValues",
value: enumValues,
message: "Enum values are required for enum output."
})
}
for (const value of enumValues) {
if (typeof value !== "string") {
throw new InvalidArgumentError({
parameter: "enumValues",
value,
message: "Enum values must be strings."
})
}
}
}
}
// core/generate-object/generate-object.ts
var originalGenerateId = (0, import_provider_utils6.createIdGenerator)({ prefix: "aiobj", size: 24 })
async function generateObject({
model,
enum: enumValues,
// rename bc enum is reserved by typescript
schema: inputSchema,
schemaName,
schemaDescription,
mode,
output = "object",
system,
prompt,
messages,
maxRetries: maxRetriesArg,
abortSignal,
headers,
experimental_telemetry: telemetry,
experimental_providerMetadata: providerMetadata,
_internal: {
generateId: generateId3 = originalGenerateId,
currentDate = () => /* @__PURE__ */ new Date()
} = {},
...settings
}) {
validateObjectGenerationInput({
output,
mode,
schema: inputSchema,
schemaName,
schemaDescription,
enumValues
})
const { maxRetries, retry } = prepareRetries({ maxRetries: maxRetriesArg })
const outputStrategy = getOutputStrategy({
output,
schema: inputSchema,
enumValues
})
if (outputStrategy.type === "no-schema" && mode === void 0) {
mode = "json"
}
const baseTelemetryAttributes = getBaseTelemetryAttributes({
model,
telemetry,
headers,
settings: { ...settings, maxRetries }
})
const tracer = getTracer(telemetry)
return recordSpan({
name: "ai.generateObject",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.generateObject",
telemetry
}),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.prompt": {
input: () => JSON.stringify({ system, prompt, messages })
},
"ai.schema": outputStrategy.jsonSchema != null ? { input: () => JSON.stringify(outputStrategy.jsonSchema) } : void 0,
"ai.schema.name": schemaName,
"ai.schema.description": schemaDescription,
"ai.settings.output": outputStrategy.type,
"ai.settings.mode": mode
}
}),
tracer,
fn: async (span) => {
var _a14, _b
if (mode === "auto" || mode == null) {
mode = model.defaultObjectGenerationMode
}
let result
let finishReason
let usage
let warnings
let rawResponse
let response
let request
let logprobs
let resultProviderMetadata
switch (mode) {
case "json": {
const standardizedPrompt = standardizePrompt({
prompt: {
system: outputStrategy.jsonSchema == null ? injectJsonInstruction({ prompt: system }) : model.supportsStructuredOutputs ? system : injectJsonInstruction({
prompt: system,
schema: outputStrategy.jsonSchema
}),
prompt,
messages
},
tools: void 0
})
const promptMessages = await convertToLanguageModelPrompt({
prompt: standardizedPrompt,
modelSupportsImageUrls: model.supportsImageUrls,
modelSupportsUrl: model.supportsUrl
})
const generateResult = await retry(
() => recordSpan({
name: "ai.generateObject.doGenerate",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.generateObject.doGenerate",
telemetry
}),
...baseTelemetryAttributes,
"ai.prompt.format": {
input: () => standardizedPrompt.type
},
"ai.prompt.messages": {
input: () => JSON.stringify(promptMessages)
},
"ai.settings.mode": mode,
// standardized gen-ai llm span attributes:
"gen_ai.system": model.provider,
"gen_ai.request.model": model.modelId,
"gen_ai.request.frequency_penalty": settings.frequencyPenalty,
"gen_ai.request.max_tokens": settings.maxTokens,
"gen_ai.request.presence_penalty": settings.presencePenalty,
"gen_ai.request.temperature": settings.temperature,
"gen_ai.request.top_k": settings.topK,
"gen_ai.request.top_p": settings.topP
}
}),
tracer,
fn: async (span2) => {
var _a15, _b2, _c, _d, _e, _f
const result2 = await model.doGenerate({
mode: {
type: "object-json",
schema: outputStrategy.jsonSchema,
name: schemaName,
description: schemaDescription
},
...prepareCallSettings(settings),
inputFormat: standardizedPrompt.type,
prompt: promptMessages,
providerMetadata,
abortSignal,
headers
})
const responseData = {
id: (_b2 = (_a15 = result2.response) == null ? void 0 : _a15.id) != null ? _b2 : generateId3(),
timestamp: (_d = (_c = result2.response) == null ? void 0 : _c.timestamp) != null ? _d : currentDate(),
modelId: (_f = (_e = result2.response) == null ? void 0 : _e.modelId) != null ? _f : model.modelId
}
if (result2.text === void 0) {
throw new NoObjectGeneratedError({
message: "No object generated: the model did not return a response.",
response: responseData,
usage: calculateLanguageModelUsage(result2.usage)
})
}
span2.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": result2.finishReason,
"ai.response.object": { output: () => result2.text },
"ai.response.id": responseData.id,
"ai.response.model": responseData.modelId,
"ai.response.timestamp": responseData.timestamp.toISOString(),
"ai.usage.promptTokens": result2.usage.promptTokens,
"ai.usage.completionTokens": result2.usage.completionTokens,
// standardized gen-ai llm span attributes:
"gen_ai.response.finish_reasons": [result2.finishReason],
"gen_ai.response.id": responseData.id,
"gen_ai.response.model": responseData.modelId,
"gen_ai.usage.prompt_tokens": result2.usage.promptTokens,
"gen_ai.usage.completion_tokens": result2.usage.completionTokens
}
})
)
return { ...result2, objectText: result2.text, responseData }
}
})
)
result = generateResult.objectText
finishReason = generateResult.finishReason
usage = generateResult.usage
warnings = generateResult.warnings
rawResponse = generateResult.rawResponse
logprobs = generateResult.logprobs
resultProviderMetadata = generateResult.providerMetadata
request = (_a14 = generateResult.request) != null ? _a14 : {}
response = generateResult.responseData
break
}
case "tool": {
const standardizedPrompt = standardizePrompt({
prompt: { system, prompt, messages },
tools: void 0
})
const promptMessages = await convertToLanguageModelPrompt({
prompt: standardizedPrompt,
modelSupportsImageUrls: model.supportsImageUrls,
modelSupportsUrl: model.supportsUrl
})
const inputFormat = standardizedPrompt.type
const generateResult = await retry(
() => recordSpan({
name: "ai.generateObject.doGenerate",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.generateObject.doGenerate",
telemetry
}),
...baseTelemetryAttributes,
"ai.prompt.format": {
input: () => inputFormat
},
"ai.prompt.messages": {
input: () => JSON.stringify(promptMessages)
},
"ai.settings.mode": mode,
// standardized gen-ai llm span attributes:
"gen_ai.system": model.provider,
"gen_ai.request.model": model.modelId,
"gen_ai.request.frequency_penalty": settings.frequencyPenalty,
"gen_ai.request.max_tokens": settings.maxTokens,
"gen_ai.request.presence_penalty": settings.presencePenalty,
"gen_ai.request.temperature": settings.temperature,
"gen_ai.request.top_k": settings.topK,
"gen_ai.request.top_p": settings.topP
}
}),
tracer,
fn: async (span2) => {
var _a15, _b2, _c, _d, _e, _f, _g, _h
const result2 = await model.doGenerate({
mode: {
type: "object-tool",
tool: {
type: "function",
name: schemaName != null ? schemaName : "json",
description: schemaDescription != null ? schemaDescription : "Respond with a JSON object.",
parameters: outputStrategy.jsonSchema
}
},
...prepareCallSettings(settings),
inputFormat,
prompt: promptMessages,
providerMetadata,
abortSignal,
headers
})
const objectText = (_b2 = (_a15 = result2.toolCalls) == null ? void 0 : _a15[0]) == null ? void 0 : _b2.args
const responseData = {
id: (_d = (_c = result2.response) == null ? void 0 : _c.id) != null ? _d : generateId3(),
timestamp: (_f = (_e = result2.response) == null ? void 0 : _e.timestamp) != null ? _f : currentDate(),
modelId: (_h = (_g = result2.response) == null ? void 0 : _g.modelId) != null ? _h : model.modelId
}
if (objectText === void 0) {
throw new NoObjectGeneratedError({
message: "No object generated: the tool was not called.",
response: responseData,
usage: calculateLanguageModelUsage(result2.usage)
})
}
span2.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": result2.finishReason,
"ai.response.object": { output: () => objectText },
"ai.response.id": responseData.id,
"ai.response.model": responseData.modelId,
"ai.response.timestamp": responseData.timestamp.toISOString(),
"ai.usage.promptTokens": result2.usage.promptTokens,
"ai.usage.completionTokens": result2.usage.completionTokens,
// standardized gen-ai llm span attributes:
"gen_ai.response.finish_reasons": [result2.finishReason],
"gen_ai.response.id": responseData.id,
"gen_ai.response.model": responseData.modelId,
"gen_ai.usage.input_tokens": result2.usage.promptTokens,
"gen_ai.usage.output_tokens": result2.usage.completionTokens
}
})
)
return { ...result2, objectText, responseData }
}
})
)
result = generateResult.objectText
finishReason = generateResult.finishReason
usage = generateResult.usage
warnings = generateResult.warnings
rawResponse = generateResult.rawResponse
logprobs = generateResult.logprobs
resultProviderMetadata = generateResult.providerMetadata
request = (_b = generateResult.request) != null ? _b : {}
response = generateResult.responseData
break
}
case void 0: {
throw new Error(
"Model does not have a default object generation mode."
)
}
default: {
const _exhaustiveCheck = mode
throw new Error(`Unsupported mode: ${_exhaustiveCheck}`)
}
}
const parseResult = (0, import_provider_utils6.safeParseJSON)({ text: result })
if (!parseResult.success) {
throw new NoObjectGeneratedError({
message: "No object generated: could not parse the response.",
cause: parseResult.error,
text: result,
response,
usage: calculateLanguageModelUsage(usage)
})
}
const validationResult = outputStrategy.validateFinalResult(
parseResult.value,
{
text: result,
response,
usage: calculateLanguageModelUsage(usage)
}
)
if (!validationResult.success) {
throw new NoObjectGeneratedError({
message: "No object generated: response did not match schema.",
cause: validationResult.error,
text: result,
response,
usage: calculateLanguageModelUsage(usage)
})
}
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": finishReason,
"ai.response.object": {
output: () => JSON.stringify(validationResult.value)
},
"ai.usage.promptTokens": usage.promptTokens,
"ai.usage.completionTokens": usage.completionTokens
}
})
)
return new DefaultGenerateObjectResult({
object: validationResult.value,
finishReason,
usage: calculateLanguageModelUsage(usage),
warnings,
request,
response: {
...response,
headers: rawResponse == null ? void 0 : rawResponse.headers
},
logprobs,
providerMetadata: resultProviderMetadata
})
}
})
}
var DefaultGenerateObjectResult = class {
constructor(options) {
this.object = options.object
this.finishReason = options.finishReason
this.usage = options.usage
this.warnings = options.warnings
this.experimental_providerMetadata = options.providerMetadata
this.response = options.response
this.request = options.request
this.logprobs = options.logprobs
}
toJsonResponse(init) {
var _a14
return new Response(JSON.stringify(this.object), {
status: (_a14 = init == null ? void 0 : init.status) != null ? _a14 : 200,
headers: prepareResponseHeaders(init == null ? void 0 : init.headers, {
contentType: "application/json; charset=utf-8"
})
})
}
}
// core/generate-object/stream-object.ts
var import_provider_utils7 = require("@ai-sdk/provider-utils")
var import_ui_utils3 = require("@ai-sdk/ui-utils")
// util/delayed-promise.ts
var DelayedPromise = class {
constructor() {
this.status = { type: "pending" }
this._resolve = void 0
this._reject = void 0
}
get value() {
if (this.promise) {
return this.promise
}
this.promise = new Promise((resolve, reject) => {
if (this.status.type === "resolved") {
resolve(this.status.value)
} else if (this.status.type === "rejected") {
reject(this.status.error)
}
this._resolve = resolve
this._reject = reject
})
return this.promise
}
resolve(value) {
var _a14
this.status = { type: "resolved", value }
if (this.promise) {
(_a14 = this._resolve) == null ? void 0 : _a14.call(this, value)
}
}
reject(error) {
var _a14
this.status = { type: "rejected", error }
if (this.promise) {
(_a14 = this._reject) == null ? void 0 : _a14.call(this, error)
}
}
}
// util/create-resolvable-promise.ts
function createResolvablePromise() {
let resolve
let reject
const promise = new Promise((res, rej) => {
resolve = res
reject = rej
})
return {
promise,
resolve,
reject
}
}
// core/util/create-stitchable-stream.ts
function createStitchableStream() {
let innerStreamReaders = []
let controller = null
let isClosed = false
let waitForNewStream = createResolvablePromise()
const processPull = async () => {
if (isClosed && innerStreamReaders.length === 0) {
controller == null ? void 0 : controller.close()
return
}
if (innerStreamReaders.length === 0) {
waitForNewStream = createResolvablePromise()
await waitForNewStream.promise
return processPull()
}
try {
const { value, done } = await innerStreamReaders[0].read()
if (done) {
innerStreamReaders.shift()
if (innerStreamReaders.length > 0) {
await processPull()
} else if (isClosed) {
controller == null ? void 0 : controller.close()
}
} else {
controller == null ? void 0 : controller.enqueue(value)
}
} catch (error) {
controller == null ? void 0 : controller.error(error)
innerStreamReaders.shift()
if (isClosed && innerStreamReaders.length === 0) {
controller == null ? void 0 : controller.close()
}
}
}
return {
stream: new ReadableStream({
start(controllerParam) {
controller = controllerParam
},
pull: processPull,
async cancel() {
for (const reader of innerStreamReaders) {
await reader.cancel()
}
innerStreamReaders = []
isClosed = true
}
}),
addStream: (innerStream) => {
if (isClosed) {
throw new Error("Cannot add inner stream: outer stream is closed")
}
innerStreamReaders.push(innerStream.getReader())
waitForNewStream.resolve()
},
/**
* Gracefully close the outer stream. This will let the inner streams
* finish processing and then close the outer stream.
*/
close: () => {
isClosed = true
waitForNewStream.resolve()
if (innerStreamReaders.length === 0) {
controller == null ? void 0 : controller.close()
}
},
/**
* Immediately close the outer stream. This will cancel all inner streams
* and close the outer stream.
*/
terminate: () => {
isClosed = true
waitForNewStream.resolve()
innerStreamReaders.forEach((reader) => reader.cancel())
innerStreamReaders = []
controller == null ? void 0 : controller.close()
}
}
}
// core/util/now.ts
function now() {
var _a14, _b
return (_b = (_a14 = globalThis == null ? void 0 : globalThis.performance) == null ? void 0 : _a14.now()) != null ? _b : Date.now()
}
// core/generate-object/stream-object.ts
var originalGenerateId2 = (0, import_provider_utils7.createIdGenerator)({ prefix: "aiobj", size: 24 })
function streamObject({
model,
schema: inputSchema,
schemaName,
schemaDescription,
mode,
output = "object",
system,
prompt,
messages,
maxRetries,
abortSignal,
headers,
experimental_telemetry: telemetry,
experimental_providerMetadata: providerMetadata,
onFinish,
_internal: {
generateId: generateId3 = originalGenerateId2,
currentDate = () => /* @__PURE__ */ new Date(),
now: now2 = now
} = {},
...settings
}) {
validateObjectGenerationInput({
output,
mode,
schema: inputSchema,
schemaName,
schemaDescription
})
const outputStrategy = getOutputStrategy({ output, schema: inputSchema })
if (outputStrategy.type === "no-schema" && mode === void 0) {
mode = "json"
}
return new DefaultStreamObjectResult({
model,
telemetry,
headers,
settings,
maxRetries,
abortSignal,
outputStrategy,
system,
prompt,
messages,
schemaName,
schemaDescription,
inputProviderMetadata: providerMetadata,
mode,
onFinish,
generateId: generateId3,
currentDate,
now: now2
})
}
var DefaultStreamObjectResult = class {
constructor({
model,
headers,
telemetry,
settings,
maxRetries: maxRetriesArg,
abortSignal,
outputStrategy,
system,
prompt,
messages,
schemaName,
schemaDescription,
inputProviderMetadata,
mode,
onFinish,
generateId: generateId3,
currentDate,
now: now2
}) {
this.objectPromise = new DelayedPromise()
this.usagePromise = new DelayedPromise()
this.providerMetadataPromise = new DelayedPromise()
this.warningsPromise = new DelayedPromise()
this.requestPromise = new DelayedPromise()
this.responsePromise = new DelayedPromise()
this.stitchableStream = createStitchableStream()
const { maxRetries, retry } = prepareRetries({
maxRetries: maxRetriesArg
})
const baseTelemetryAttributes = getBaseTelemetryAttributes({
model,
telemetry,
headers,
settings: { ...settings, maxRetries }
})
const tracer = getTracer(telemetry)
const self = this
recordSpan({
name: "ai.streamObject",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.streamObject",
telemetry
}),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.prompt": {
input: () => JSON.stringify({ system, prompt, messages })
},
"ai.schema": outputStrategy.jsonSchema != null ? { input: () => JSON.stringify(outputStrategy.jsonSchema) } : void 0,
"ai.schema.name": schemaName,
"ai.schema.description": schemaDescription,
"ai.settings.output": outputStrategy.type,
"ai.settings.mode": mode
}
}),
tracer,
endWhenDone: false,
fn: async (rootSpan) => {
if (mode === "auto" || mode == null) {
mode = model.defaultObjectGenerationMode
}
let callOptions
let transformer
switch (mode) {
case "json": {
const standardizedPrompt = standardizePrompt({
prompt: {
system: outputStrategy.jsonSchema == null ? injectJsonInstruction({ prompt: system }) : model.supportsStructuredOutputs ? system : injectJsonInstruction({
prompt: system,
schema: outputStrategy.jsonSchema
}),
prompt,
messages
},
tools: void 0
})
callOptions = {
mode: {
type: "object-json",
schema: outputStrategy.jsonSchema,
name: schemaName,
description: schemaDescription
},
...prepareCallSettings(settings),
inputFormat: standardizedPrompt.type,
prompt: await convertToLanguageModelPrompt({
prompt: standardizedPrompt,
modelSupportsImageUrls: model.supportsImageUrls,
modelSupportsUrl: model.supportsUrl
}),
providerMetadata: inputProviderMetadata,
abortSignal,
headers
}
transformer = {
transform: (chunk, controller) => {
switch (chunk.type) {
case "text-delta":
controller.enqueue(chunk.textDelta)
break
case "response-metadata":
case "finish":
case "error":
controller.enqueue(chunk)
break
}
}
}
break
}
case "tool": {
const standardizedPrompt = standardizePrompt({
prompt: { system, prompt, messages },
tools: void 0
})
callOptions = {
mode: {
type: "object-tool",
tool: {
type: "function",
name: schemaName != null ? schemaName : "json",
description: schemaDescription != null ? schemaDescription : "Respond with a JSON object.",
parameters: outputStrategy.jsonSchema
}
},
...prepareCallSettings(settings),
inputFormat: standardizedPrompt.type,
prompt: await convertToLanguageModelPrompt({
prompt: standardizedPrompt,
modelSupportsImageUrls: model.supportsImageUrls,
modelSupportsUrl: model.supportsUrl
}),
providerMetadata: inputProviderMetadata,
abortSignal,
headers
}
transformer = {
transform(chunk, controller) {
switch (chunk.type) {
case "tool-call-delta":
controller.enqueue(chunk.argsTextDelta)
break
case "response-metadata":
case "finish":
case "error":
controller.enqueue(chunk)
break
}
}
}
break
}
case void 0: {
throw new Error(
"Model does not have a default object generation mode."
)
}
default: {
const _exhaustiveCheck = mode
throw new Error(`Unsupported mode: ${_exhaustiveCheck}`)
}
}
const {
result: { stream, warnings, rawResponse, request },
doStreamSpan,
startTimestampMs
} = await retry(
() => recordSpan({
name: "ai.streamObject.doStream",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.streamObject.doStream",
telemetry
}),
...baseTelemetryAttributes,
"ai.prompt.format": {
input: () => callOptions.inputFormat
},
"ai.prompt.messages": {
input: () => JSON.stringify(callOptions.prompt)
},
"ai.settings.mode": mode,
// standardized gen-ai llm span attributes:
"gen_ai.system": model.provider,
"gen_ai.request.model": model.modelId,
"gen_ai.request.frequency_penalty": settings.frequencyPenalty,
"gen_ai.request.max_tokens": settings.maxTokens,
"gen_ai.request.presence_penalty": settings.presencePenalty,
"gen_ai.request.temperature": settings.temperature,
"gen_ai.request.top_k": settings.topK,
"gen_ai.request.top_p": settings.topP
}
}),
tracer,
endWhenDone: false,
fn: async (doStreamSpan2) => ({
startTimestampMs: now2(),
doStreamSpan: doStreamSpan2,
result: await model.doStream(callOptions)
})
})
)
self.requestPromise.resolve(request != null ? request : {})
let usage
let finishReason
let providerMetadata
let object2
let error
let accumulatedText = ""
let textDelta = ""
let response = {
id: generateId3(),
timestamp: currentDate(),
modelId: model.modelId
}
let latestObjectJson = void 0
let latestObject = void 0
let isFirstChunk = true
let isFirstDelta = true
const transformedStream = stream.pipeThrough(new TransformStream(transformer)).pipeThrough(
new TransformStream({
async transform(chunk, controller) {
var _a14, _b, _c
if (isFirstChunk) {
const msToFirstChunk = now2() - startTimestampMs
isFirstChunk = false
doStreamSpan.addEvent("ai.stream.firstChunk", {
"ai.stream.msToFirstChunk": msToFirstChunk
})
doStreamSpan.setAttributes({
"ai.stream.msToFirstChunk": msToFirstChunk
})
}
if (typeof chunk === "string") {
accumulatedText += chunk
textDelta += chunk
const { value: currentObjectJson, state: parseState } = (0, import_ui_utils3.parsePartialJson)(accumulatedText)
if (currentObjectJson !== void 0 && !(0, import_ui_utils3.isDeepEqualData)(latestObjectJson, currentObjectJson)) {
const validationResult = outputStrategy.validatePartialResult({
value: currentObjectJson,
textDelta,
latestObject,
isFirstDelta,
isFinalDelta: parseState === "successful-parse"
})
if (validationResult.success && !(0, import_ui_utils3.isDeepEqualData)(
latestObject,
validationResult.value.partial
)) {
latestObjectJson = currentObjectJson
latestObject = validationResult.value.partial
controller.enqueue({
type: "object",
object: latestObject
})
controller.enqueue({
type: "text-delta",
textDelta: validationResult.value.textDelta
})
textDelta = ""
isFirstDelta = false
}
}
return
}
switch (chunk.type) {
case "response-metadata": {
response = {
id: (_a14 = chunk.id) != null ? _a14 : response.id,
timestamp: (_b = chunk.timestamp) != null ? _b : response.timestamp,
modelId: (_c = chunk.modelId) != null ? _c : response.modelId
}
break
}
case "finish": {
if (textDelta !== "") {
controller.enqueue({ type: "text-delta", textDelta })
}
finishReason = chunk.finishReason
usage = calculateLanguageModelUsage(chunk.usage)
providerMetadata = chunk.providerMetadata
controller.enqueue({ ...chunk, usage, response })
self.usagePromise.resolve(usage)
self.providerMetadataPromise.resolve(providerMetadata)
self.responsePromise.resolve({
...response,
headers: rawResponse == null ? void 0 : rawResponse.headers
})
const validationResult = outputStrategy.validateFinalResult(
latestObjectJson,
{
text: accumulatedText,
response,
usage
}
)
if (validationResult.success) {
object2 = validationResult.value
self.objectPromise.resolve(object2)
} else {
error = new NoObjectGeneratedError({
message: "No object generated: response did not match schema.",
cause: validationResult.error,
text: accumulatedText,
response,
usage
})
self.objectPromise.reject(error)
}
break
}
default: {
controller.enqueue(chunk)
break
}
}
},
// invoke onFinish callback and resolve toolResults promise when the stream is about to close:
async flush(controller) {
try {
const finalUsage = usage != null ? usage : {
promptTokens: NaN,
completionTokens: NaN,
totalTokens: NaN
}
doStreamSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": finishReason,
"ai.response.object": {
output: () => JSON.stringify(object2)
},
"ai.response.id": response.id,
"ai.response.model": response.modelId,
"ai.response.timestamp": response.timestamp.toISOString(),
"ai.usage.promptTokens": finalUsage.promptTokens,
"ai.usage.completionTokens": finalUsage.completionTokens,
// standardized gen-ai llm span attributes:
"gen_ai.response.finish_reasons": [finishReason],
"gen_ai.response.id": response.id,
"gen_ai.response.model": response.modelId,
"gen_ai.usage.input_tokens": finalUsage.promptTokens,
"gen_ai.usage.output_tokens": finalUsage.completionTokens
}
})
)
doStreamSpan.end()
rootSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.usage.promptTokens": finalUsage.promptTokens,
"ai.usage.completionTokens": finalUsage.completionTokens,
"ai.response.object": {
output: () => JSON.stringify(object2)
}
}
})
)
await (onFinish == null ? void 0 : onFinish({
usage: finalUsage,
object: object2,
error,
response: {
...response,
headers: rawResponse == null ? void 0 : rawResponse.headers
},
warnings,
experimental_providerMetadata: providerMetadata
}))
} catch (error2) {
controller.error(error2)
} finally {
rootSpan.end()
}
}
})
)
self.stitchableStream.addStream(transformedStream)
}
}).catch((error) => {
self.stitchableStream.addStream(
new ReadableStream({
start(controller) {
controller.error(error)
}
})
)
}).finally(() => {
self.stitchableStream.close()
})
this.outputStrategy = outputStrategy
}
get object() {
return this.objectPromise.value
}
get usage() {
return this.usagePromise.value
}
get experimental_providerMetadata() {
return this.providerMetadataPromise.value
}
get warnings() {
return this.warningsPromise.value
}
get request() {
return this.requestPromise.value
}
get response() {
return this.responsePromise.value
}
get partialObjectStream() {
return createAsyncIterableStream(
this.stitchableStream.stream.pipeThrough(
new TransformStream({
transform(chunk, controller) {
switch (chunk.type) {
case "object":
controller.enqueue(chunk.object)
break
case "text-delta":
case "finish":
break
case "error":
controller.error(chunk.error)
break
default: {
const _exhaustiveCheck = chunk
throw new Error(`Unsupported chunk type: ${_exhaustiveCheck}`)
}
}
}
})
)
)
}
get elementStream() {
return this.outputStrategy.createElementStream(
this.stitchableStream.stream
)
}
get textStream() {
return createAsyncIterableStream(
this.stitchableStream.stream.pipeThrough(
new TransformStream({
transform(chunk, controller) {
switch (chunk.type) {
case "text-delta":
controller.enqueue(chunk.textDelta)
break
case "object":
case "finish":
break
case "error":
controller.error(chunk.error)
break
default: {
const _exhaustiveCheck = chunk
throw new Error(`Unsupported chunk type: ${_exhaustiveCheck}`)
}
}
}
})
)
)
}
get fullStream() {
return createAsyncIterableStream(this.stitchableStream.stream)
}
pipeTextStreamToResponse(response, init) {
writeToServerResponse({
response,
status: init == null ? void 0 : init.status,
statusText: init == null ? void 0 : init.statusText,
headers: prepareOutgoingHttpHeaders(init == null ? void 0 : init.headers, {
contentType: "text/plain; charset=utf-8"
}),
stream: this.textStream.pipeThrough(new TextEncoderStream())
})
}
toTextStreamResponse(init) {
var _a14
return new Response(this.textStream.pipeThrough(new TextEncoderStream()), {
status: (_a14 = init == null ? void 0 : init.status) != null ? _a14 : 200,
headers: prepareResponseHeaders(init == null ? void 0 : init.headers, {
contentType: "text/plain; charset=utf-8"
})
})
}
}
// core/generate-text/generate-text.ts
var import_provider_utils9 = require("@ai-sdk/provider-utils")
// errors/no-output-specified-error.ts
var import_provider11 = require("@ai-sdk/provider")
var name8 = "AI_NoOutputSpecifiedError"
var marker8 = `vercel.ai.error.${name8}`
var symbol8 = Symbol.for(marker8)
var _a8
var NoOutputSpecifiedError = class extends import_provider11.AISDKError {
// used in isInstance
constructor({ message = "No output specified." } = {}) {
super({ name: name8, message })
this[_a8] = true
}
static isInstance(error) {
return import_provider11.AISDKError.hasMarker(error, marker8)
}
}
_a8 = symbol8
// errors/tool-execution-error.ts
var import_provider12 = require("@ai-sdk/provider")
var name9 = "AI_ToolExecutionError"
var marker9 = `vercel.ai.error.${name9}`
var symbol9 = Symbol.for(marker9)
var _a9
var ToolExecutionError = class extends import_provider12.AISDKError {
constructor({
toolArgs,
toolName,
toolCallId,
cause,
message = `Error executing tool ${toolName}: ${(0, import_provider12.getErrorMessage)(cause)}`
}) {
super({ name: name9, message, cause })
this[_a9] = true
this.toolArgs = toolArgs
this.toolName = toolName
this.toolCallId = toolCallId
}
static isInstance(error) {
return import_provider12.AISDKError.hasMarker(error, marker9)
}
}
_a9 = symbol9
// core/prompt/prepare-tools-and-tool-choice.ts
var import_ui_utils4 = require("@ai-sdk/ui-utils")
// core/util/is-non-empty-object.ts
function isNonEmptyObject(object2) {
return object2 != null && Object.keys(object2).length > 0
}
// core/prompt/prepare-tools-and-tool-choice.ts
function prepareToolsAndToolChoice({
tools,
toolChoice,
activeTools
}) {
if (!isNonEmptyObject(tools)) {
return {
tools: void 0,
toolChoice: void 0
}
}
const filteredTools = activeTools != null ? Object.entries(tools).filter(
([name14]) => activeTools.includes(name14)
) : Object.entries(tools)
return {
tools: filteredTools.map(([name14, tool2]) => {
const toolType = tool2.type
switch (toolType) {
case void 0:
case "function":
return {
type: "function",
name: name14,
description: tool2.description,
parameters: (0, import_ui_utils4.asSchema)(tool2.parameters).jsonSchema
}
case "provider-defined":
return {
type: "provider-defined",
name: name14,
id: tool2.id,
args: tool2.args
}
default: {
const exhaustiveCheck = toolType
throw new Error(`Unsupported tool type: ${exhaustiveCheck}`)
}
}
}),
toolChoice: toolChoice == null ? { type: "auto" } : typeof toolChoice === "string" ? { type: toolChoice } : { type: "tool", toolName: toolChoice.toolName }
}
}
// core/util/split-on-last-whitespace.ts
var lastWhitespaceRegexp = /^([\s\S]*?)(\s+)(\S*)$/
function splitOnLastWhitespace(text2) {
const match = text2.match(lastWhitespaceRegexp)
return match ? { prefix: match[1], whitespace: match[2], suffix: match[3] } : void 0
}
// core/util/remove-text-after-last-whitespace.ts
function removeTextAfterLastWhitespace(text2) {
const match = splitOnLastWhitespace(text2)
return match ? match.prefix + match.whitespace : text2
}
// core/generate-text/parse-tool-call.ts
var import_provider_utils8 = require("@ai-sdk/provider-utils")
var import_ui_utils5 = require("@ai-sdk/ui-utils")
// errors/invalid-tool-arguments-error.ts
var import_provider13 = require("@ai-sdk/provider")
var name10 = "AI_InvalidToolArgumentsError"
var marker10 = `vercel.ai.error.${name10}`
var symbol10 = Symbol.for(marker10)
var _a10
var InvalidToolArgumentsError = class extends import_provider13.AISDKError {
constructor({
toolArgs,
toolName,
cause,
message = `Invalid arguments for tool ${toolName}: ${(0, import_provider13.getErrorMessage)(
cause
)}`
}) {
super({ name: name10, message, cause })
this[_a10] = true
this.toolArgs = toolArgs
this.toolName = toolName
}
static isInstance(error) {
return import_provider13.AISDKError.hasMarker(error, marker10)
}
}
_a10 = symbol10
// errors/no-such-tool-error.ts
var import_provider14 = require("@ai-sdk/provider")
var name11 = "AI_NoSuchToolError"
var marker11 = `vercel.ai.error.${name11}`
var symbol11 = Symbol.for(marker11)
var _a11
var NoSuchToolError = class extends import_provider14.AISDKError {
constructor({
toolName,
availableTools = void 0,
message = `Model tried to call unavailable tool '${toolName}'. ${availableTools === void 0 ? "No tools are available." : `Available tools: ${availableTools.join(", ")}.`}`
}) {
super({ name: name11, message })
this[_a11] = true
this.toolName = toolName
this.availableTools = availableTools
}
static isInstance(error) {
return import_provider14.AISDKError.hasMarker(error, marker11)
}
}
_a11 = symbol11
// errors/tool-call-repair-error.ts
var import_provider15 = require("@ai-sdk/provider")
var name12 = "AI_ToolCallRepairError"
var marker12 = `vercel.ai.error.${name12}`
var symbol12 = Symbol.for(marker12)
var _a12
var ToolCallRepairError = class extends import_provider15.AISDKError {
constructor({
cause,
originalError,
message = `Error repairing tool call: ${(0, import_provider15.getErrorMessage)(cause)}`
}) {
super({ name: name12, message, cause })
this[_a12] = true
this.originalError = originalError
}
static isInstance(error) {
return import_provider15.AISDKError.hasMarker(error, marker12)
}
}
_a12 = symbol12
// core/generate-text/parse-tool-call.ts
async function parseToolCall({
toolCall,
tools,
repairToolCall,
system,
messages
}) {
if (tools == null) {
throw new NoSuchToolError({ toolName: toolCall.toolName })
}
try {
return await doParseToolCall({ toolCall, tools })
} catch (error) {
if (repairToolCall == null || !(NoSuchToolError.isInstance(error) || InvalidToolArgumentsError.isInstance(error))) {
throw error
}
let repairedToolCall = null
try {
repairedToolCall = await repairToolCall({
toolCall,
tools,
parameterSchema: ({ toolName }) => (0, import_ui_utils5.asSchema)(tools[toolName].parameters).jsonSchema,
system,
messages,
error
})
} catch (repairError) {
throw new ToolCallRepairError({
cause: repairError,
originalError: error
})
}
if (repairedToolCall == null) {
throw error
}
return await doParseToolCall({ toolCall: repairedToolCall, tools })
}
}
async function doParseToolCall({
toolCall,
tools
}) {
const toolName = toolCall.toolName
const tool2 = tools[toolName]
if (tool2 == null) {
throw new NoSuchToolError({
toolName: toolCall.toolName,
availableTools: Object.keys(tools)
})
}
const schema = (0, import_ui_utils5.asSchema)(tool2.parameters)
const parseResult = toolCall.args.trim() === "" ? (0, import_provider_utils8.safeValidateTypes)({ value: {}, schema }) : (0, import_provider_utils8.safeParseJSON)({ text: toolCall.args, schema })
if (parseResult.success === false) {
throw new InvalidToolArgumentsError({
toolName,
toolArgs: toolCall.args,
cause: parseResult.error
})
}
return {
type: "tool-call",
toolCallId: toolCall.toolCallId,
toolName,
args: parseResult.value
}
}
// core/generate-text/to-response-messages.ts
function toResponseMessages({
text: text2 = "",
tools,
toolCalls,
toolResults,
messageId,
generateMessageId
}) {
const responseMessages = []
responseMessages.push({
role: "assistant",
content: [{ type: "text", text: text2 }, ...toolCalls],
id: messageId
})
if (toolResults.length > 0) {
responseMessages.push({
role: "tool",
id: generateMessageId(),
content: toolResults.map((toolResult) => {
const tool2 = tools[toolResult.toolName]
return (tool2 == null ? void 0 : tool2.experimental_toToolResultContent) != null ? {
type: "tool-result",
toolCallId: toolResult.toolCallId,
toolName: toolResult.toolName,
result: tool2.experimental_toToolResultContent(toolResult.result),
experimental_content: tool2.experimental_toToolResultContent(
toolResult.result
)
} : {
type: "tool-result",
toolCallId: toolResult.toolCallId,
toolName: toolResult.toolName,
result: toolResult.result
}
})
})
}
return responseMessages
}
// core/generate-text/generate-text.ts
var originalGenerateId3 = (0, import_provider_utils9.createIdGenerator)({
prefix: "aitxt",
size: 24
})
var originalGenerateMessageId = (0, import_provider_utils9.createIdGenerator)({
prefix: "msg",
size: 24
})
async function generateText({
model,
tools,
toolChoice,
system,
prompt,
messages,
maxRetries: maxRetriesArg,
abortSignal,
headers,
maxSteps = 1,
experimental_generateMessageId: generateMessageId = originalGenerateMessageId,
experimental_output: output,
experimental_continueSteps: continueSteps = false,
experimental_telemetry: telemetry,
experimental_providerMetadata: providerMetadata,
experimental_activeTools: activeTools,
experimental_repairToolCall: repairToolCall,
_internal: {
generateId: generateId3 = originalGenerateId3,
currentDate = () => /* @__PURE__ */ new Date()
} = {},
onStepFinish,
...settings
}) {
var _a14
if (maxSteps < 1) {
throw new InvalidArgumentError({
parameter: "maxSteps",
value: maxSteps,
message: "maxSteps must be at least 1"
})
}
const { maxRetries, retry } = prepareRetries({ maxRetries: maxRetriesArg })
const baseTelemetryAttributes = getBaseTelemetryAttributes({
model,
telemetry,
headers,
settings: { ...settings, maxRetries }
})
const initialPrompt = standardizePrompt({
prompt: {
system: (_a14 = output == null ? void 0 : output.injectIntoSystemPrompt({ system, model })) != null ? _a14 : system,
prompt,
messages
},
tools
})
const tracer = getTracer(telemetry)
return recordSpan({
name: "ai.generateText",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.generateText",
telemetry
}),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.prompt": {
input: () => JSON.stringify({ system, prompt, messages })
},
"ai.settings.maxSteps": maxSteps
}
}),
tracer,
fn: async (span) => {
var _a15, _b, _c, _d, _e, _f
const mode = {
type: "regular",
...prepareToolsAndToolChoice({ tools, toolChoice, activeTools })
}
const callSettings = prepareCallSettings(settings)
let currentModelResponse
let currentToolCalls = []
let currentToolResults = []
let stepCount = 0
const responseMessages = []
let text2 = ""
const steps = []
let usage = {
completionTokens: 0,
promptTokens: 0,
totalTokens: 0
}
let stepType = "initial"
do {
const promptFormat = stepCount === 0 ? initialPrompt.type : "messages"
const stepInputMessages = [
...initialPrompt.messages,
...responseMessages
]
const promptMessages = await convertToLanguageModelPrompt({
prompt: {
type: promptFormat,
system: initialPrompt.system,
messages: stepInputMessages
},
modelSupportsImageUrls: model.supportsImageUrls,
modelSupportsUrl: model.supportsUrl
})
currentModelResponse = await retry(
() => recordSpan({
name: "ai.generateText.doGenerate",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.generateText.doGenerate",
telemetry
}),
...baseTelemetryAttributes,
"ai.prompt.format": { input: () => promptFormat },
"ai.prompt.messages": {
input: () => JSON.stringify(promptMessages)
},
"ai.prompt.tools": {
// convert the language model level tools:
input: () => {
var _a16
return (_a16 = mode.tools) == null ? void 0 : _a16.map((tool2) => JSON.stringify(tool2))
}
},
"ai.prompt.toolChoice": {
input: () => mode.toolChoice != null ? JSON.stringify(mode.toolChoice) : void 0
},
// standardized gen-ai llm span attributes:
"gen_ai.system": model.provider,
"gen_ai.request.model": model.modelId,
"gen_ai.request.frequency_penalty": settings.frequencyPenalty,
"gen_ai.request.max_tokens": settings.maxTokens,
"gen_ai.request.presence_penalty": settings.presencePenalty,
"gen_ai.request.stop_sequences": settings.stopSequences,
"gen_ai.request.temperature": settings.temperature,
"gen_ai.request.top_k": settings.topK,
"gen_ai.request.top_p": settings.topP
}
}),
tracer,
fn: async (span2) => {
var _a16, _b2, _c2, _d2, _e2, _f2
const result = await model.doGenerate({
mode,
...callSettings,
inputFormat: promptFormat,
responseFormat: output == null ? void 0 : output.responseFormat({ model }),
prompt: promptMessages,
providerMetadata,
abortSignal,
headers
})
const responseData = {
id: (_b2 = (_a16 = result.response) == null ? void 0 : _a16.id) != null ? _b2 : generateId3(),
timestamp: (_d2 = (_c2 = result.response) == null ? void 0 : _c2.timestamp) != null ? _d2 : currentDate(),
modelId: (_f2 = (_e2 = result.response) == null ? void 0 : _e2.modelId) != null ? _f2 : model.modelId
}
span2.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": result.finishReason,
"ai.response.text": {
output: () => result.text
},
"ai.response.toolCalls": {
output: () => JSON.stringify(result.toolCalls)
},
"ai.response.id": responseData.id,
"ai.response.model": responseData.modelId,
"ai.response.timestamp": responseData.timestamp.toISOString(),
"ai.usage.promptTokens": result.usage.promptTokens,
"ai.usage.completionTokens": result.usage.completionTokens,
// standardized gen-ai llm span attributes:
"gen_ai.response.finish_reasons": [result.finishReason],
"gen_ai.response.id": responseData.id,
"gen_ai.response.model": responseData.modelId,
"gen_ai.usage.input_tokens": result.usage.promptTokens,
"gen_ai.usage.output_tokens": result.usage.completionTokens
}
})
)
return { ...result, response: responseData }
}
})
)
currentToolCalls = await Promise.all(
((_a15 = currentModelResponse.toolCalls) != null ? _a15 : []).map(
(toolCall) => parseToolCall({
toolCall,
tools,
repairToolCall,
system,
messages: stepInputMessages
})
)
)
currentToolResults = tools == null ? [] : await executeTools({
toolCalls: currentToolCalls,
tools,
tracer,
telemetry,
messages: stepInputMessages,
abortSignal
})
const currentUsage = calculateLanguageModelUsage(
currentModelResponse.usage
)
usage = addLanguageModelUsage(usage, currentUsage)
let nextStepType = "done"
if (++stepCount < maxSteps) {
if (continueSteps && currentModelResponse.finishReason === "length" && // only use continue when there are no tool calls:
currentToolCalls.length === 0) {
nextStepType = "continue"
} else if (
// there are tool calls:
currentToolCalls.length > 0 && // all current tool calls have results:
currentToolResults.length === currentToolCalls.length
) {
nextStepType = "tool-result"
}
}
const originalText = (_b = currentModelResponse.text) != null ? _b : ""
const stepTextLeadingWhitespaceTrimmed = stepType === "continue" && // only for continue steps
text2.trimEnd() !== text2 ? originalText.trimStart() : originalText
const stepText = nextStepType === "continue" ? removeTextAfterLastWhitespace(stepTextLeadingWhitespaceTrimmed) : stepTextLeadingWhitespaceTrimmed
text2 = nextStepType === "continue" || stepType === "continue" ? text2 + stepText : stepText
if (stepType === "continue") {
const lastMessage = responseMessages[responseMessages.length - 1]
if (typeof lastMessage.content === "string") {
lastMessage.content += stepText
} else {
lastMessage.content.push({
text: stepText,
type: "text"
})
}
} else {
responseMessages.push(
...toResponseMessages({
text: text2,
tools: tools != null ? tools : {},
toolCalls: currentToolCalls,
toolResults: currentToolResults,
messageId: generateMessageId(),
generateMessageId
})
)
}
const currentStepResult = {
stepType,
text: stepText,
toolCalls: currentToolCalls,
toolResults: currentToolResults,
finishReason: currentModelResponse.finishReason,
usage: currentUsage,
warnings: currentModelResponse.warnings,
logprobs: currentModelResponse.logprobs,
request: (_c = currentModelResponse.request) != null ? _c : {},
response: {
...currentModelResponse.response,
headers: (_d = currentModelResponse.rawResponse) == null ? void 0 : _d.headers,
// deep clone msgs to avoid mutating past messages in multi-step:
messages: structuredClone(responseMessages)
},
experimental_providerMetadata: currentModelResponse.providerMetadata,
isContinued: nextStepType === "continue"
}
steps.push(currentStepResult)
await (onStepFinish == null ? void 0 : onStepFinish(currentStepResult))
stepType = nextStepType
} while (stepType !== "done")
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": currentModelResponse.finishReason,
"ai.response.text": {
output: () => currentModelResponse.text
},
"ai.response.toolCalls": {
output: () => JSON.stringify(currentModelResponse.toolCalls)
},
"ai.usage.promptTokens": currentModelResponse.usage.promptTokens,
"ai.usage.completionTokens": currentModelResponse.usage.completionTokens
}
})
)
return new DefaultGenerateTextResult({
text: text2,
outputResolver: () => {
if (output == null) {
throw new NoOutputSpecifiedError()
}
return output.parseOutput(
{ text: text2 },
{ response: currentModelResponse.response, usage }
)
},
toolCalls: currentToolCalls,
toolResults: currentToolResults,
finishReason: currentModelResponse.finishReason,
usage,
warnings: currentModelResponse.warnings,
request: (_e = currentModelResponse.request) != null ? _e : {},
response: {
...currentModelResponse.response,
headers: (_f = currentModelResponse.rawResponse) == null ? void 0 : _f.headers,
messages: responseMessages
},
logprobs: currentModelResponse.logprobs,
steps,
providerMetadata: currentModelResponse.providerMetadata
})
}
})
}
async function executeTools({
toolCalls,
tools,
tracer,
telemetry,
messages,
abortSignal
}) {
const toolResults = await Promise.all(
toolCalls.map(async ({ toolCallId, toolName, args }) => {
const tool2 = tools[toolName]
if ((tool2 == null ? void 0 : tool2.execute) == null) {
return void 0
}
const result = await recordSpan({
name: "ai.toolCall",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.toolCall",
telemetry
}),
"ai.toolCall.name": toolName,
"ai.toolCall.id": toolCallId,
"ai.toolCall.args": {
output: () => JSON.stringify(args)
}
}
}),
tracer,
fn: async (span) => {
try {
const result2 = await tool2.execute(args, {
toolCallId,
messages,
abortSignal
})
try {
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.toolCall.result": {
output: () => JSON.stringify(result2)
}
}
})
)
} catch (ignored) {
console.error(ignored)
}
return result2
} catch (error) {
throw new ToolExecutionError({
toolCallId,
toolName,
toolArgs: args,
cause: error
})
}
}
})
return {
type: "tool-result",
toolCallId,
toolName,
args,
result
}
})
)
return toolResults.filter(
(result) => result != null
)
}
var DefaultGenerateTextResult = class {
constructor(options) {
this.text = options.text
this.toolCalls = options.toolCalls
this.toolResults = options.toolResults
this.finishReason = options.finishReason
this.usage = options.usage
this.warnings = options.warnings
this.request = options.request
this.response = options.response
this.steps = options.steps
this.experimental_providerMetadata = options.providerMetadata
this.logprobs = options.logprobs
this.outputResolver = options.outputResolver
}
get experimental_output() {
return this.outputResolver()
}
}
// core/generate-text/output.ts
var output_exports = {}
__export(output_exports, {
object: () => object,
text: () => text
})
var import_provider_utils10 = require("@ai-sdk/provider-utils")
var import_ui_utils6 = require("@ai-sdk/ui-utils")
// errors/index.ts
var import_provider16 = require("@ai-sdk/provider")
// core/generate-text/output.ts
var text = () => ({
type: "text",
responseFormat: () => ({ type: "text" }),
injectIntoSystemPrompt({ system }) {
return system
},
parsePartial({ text: text2 }) {
return { partial: text2 }
},
parseOutput({ text: text2 }) {
return text2
}
})
var object = ({
schema: inputSchema
}) => {
const schema = (0, import_ui_utils6.asSchema)(inputSchema)
return {
type: "object",
responseFormat: ({ model }) => ({
type: "json",
schema: model.supportsStructuredOutputs ? schema.jsonSchema : void 0
}),
injectIntoSystemPrompt({ system, model }) {
return model.supportsStructuredOutputs ? system : injectJsonInstruction({
prompt: system,
schema: schema.jsonSchema
})
},
parsePartial({ text: text2 }) {
const result = (0, import_ui_utils6.parsePartialJson)(text2)
switch (result.state) {
case "failed-parse":
case "undefined-input":
return void 0
case "repaired-parse":
case "successful-parse":
return {
// Note: currently no validation of partial results:
partial: result.value
}
default: {
const _exhaustiveCheck = result.state
throw new Error(`Unsupported parse state: ${_exhaustiveCheck}`)
}
}
},
parseOutput({ text: text2 }, context) {
const parseResult = (0, import_provider_utils10.safeParseJSON)({ text: text2 })
if (!parseResult.success) {
throw new NoObjectGeneratedError({
message: "No object generated: could not parse the response.",
cause: parseResult.error,
text: text2,
response: context.response,
usage: context.usage
})
}
const validationResult = (0, import_provider_utils10.safeValidateTypes)({
value: parseResult.value,
schema
})
if (!validationResult.success) {
throw new NoObjectGeneratedError({
message: "No object generated: response did not match schema.",
cause: validationResult.error,
text: text2,
response: context.response,
usage: context.usage
})
}
return validationResult.value
}
}
}
// core/generate-text/smooth-stream.ts
var import_provider17 = require("@ai-sdk/provider")
var CHUNKING_REGEXPS = {
word: /\s*\S+\s+/m,
line: /[^\n]*\n/m
}
function smoothStream({
delayInMs = 10,
chunking = "word",
_internal: { delay: delay2 = delay } = {}
} = {}) {
const chunkingRegexp = typeof chunking === "string" ? CHUNKING_REGEXPS[chunking] : chunking
if (chunkingRegexp == null) {
throw new import_provider17.InvalidArgumentError({
argument: "chunking",
message: `Chunking must be "word" or "line" or a RegExp. Received: ${chunking}`
})
}
return () => {
let buffer = ""
return new TransformStream({
async transform(chunk, controller) {
if (chunk.type === "step-finish") {
if (buffer.length > 0) {
controller.enqueue({ type: "text-delta", textDelta: buffer })
buffer = ""
}
controller.enqueue(chunk)
return
}
if (chunk.type !== "text-delta") {
controller.enqueue(chunk)
return
}
buffer += chunk.textDelta
let match
while ((match = chunkingRegexp.exec(buffer)) != null) {
const chunk2 = match[0]
controller.enqueue({ type: "text-delta", textDelta: chunk2 })
buffer = buffer.slice(chunk2.length)
await delay2(delayInMs)
}
}
})
}
}
// core/generate-text/stream-text.ts
var import_provider_utils11 = require("@ai-sdk/provider-utils")
var import_ui_utils8 = require("@ai-sdk/ui-utils")
// util/as-array.ts
function asArray(value) {
return value === void 0 ? [] : Array.isArray(value) ? value : [value]
}
// core/util/merge-streams.ts
function mergeStreams(stream1, stream2) {
const reader1 = stream1.getReader()
const reader2 = stream2.getReader()
let lastRead1 = void 0
let lastRead2 = void 0
let stream1Done = false
let stream2Done = false
async function readStream1(controller) {
try {
if (lastRead1 == null) {
lastRead1 = reader1.read()
}
const result = await lastRead1
lastRead1 = void 0
if (!result.done) {
controller.enqueue(result.value)
} else {
controller.close()
}
} catch (error) {
controller.error(error)
}
}
async function readStream2(controller) {
try {
if (lastRead2 == null) {
lastRead2 = reader2.read()
}
const result = await lastRead2
lastRead2 = void 0
if (!result.done) {
controller.enqueue(result.value)
} else {
controller.close()
}
} catch (error) {
controller.error(error)
}
}
return new ReadableStream({
async pull(controller) {
try {
if (stream1Done) {
await readStream2(controller)
return
}
if (stream2Done) {
await readStream1(controller)
return
}
if (lastRead1 == null) {
lastRead1 = reader1.read()
}
if (lastRead2 == null) {
lastRead2 = reader2.read()
}
const { result, reader } = await Promise.race([
lastRead1.then((result2) => ({ result: result2, reader: reader1 })),
lastRead2.then((result2) => ({ result: result2, reader: reader2 }))
])
if (!result.done) {
controller.enqueue(result.value)
}
if (reader === reader1) {
lastRead1 = void 0
if (result.done) {
await readStream2(controller)
stream1Done = true
}
} else {
lastRead2 = void 0
if (result.done) {
stream2Done = true
await readStream1(controller)
}
}
} catch (error) {
controller.error(error)
}
},
cancel() {
reader1.cancel()
reader2.cancel()
}
})
}
// core/generate-text/run-tools-transformation.ts
var import_ui_utils7 = require("@ai-sdk/ui-utils")
function runToolsTransformation({
tools,
generatorStream,
toolCallStreaming,
tracer,
telemetry,
system,
messages,
abortSignal,
repairToolCall
}) {
let toolResultsStreamController = null
const toolResultsStream = new ReadableStream({
start(controller) {
toolResultsStreamController = controller
}
})
const activeToolCalls = {}
const outstandingToolResults = /* @__PURE__ */ new Set()
let canClose = false
let finishChunk = void 0
function attemptClose() {
if (canClose && outstandingToolResults.size === 0) {
if (finishChunk != null) {
toolResultsStreamController.enqueue(finishChunk)
}
toolResultsStreamController.close()
}
}
const forwardStream = new TransformStream({
async transform(chunk, controller) {
const chunkType = chunk.type
switch (chunkType) {
case "text-delta":
case "response-metadata":
case "error": {
controller.enqueue(chunk)
break
}
case "tool-call-delta": {
if (toolCallStreaming) {
if (!activeToolCalls[chunk.toolCallId]) {
controller.enqueue({
type: "tool-call-streaming-start",
toolCallId: chunk.toolCallId,
toolName: chunk.toolName
})
activeToolCalls[chunk.toolCallId] = true
}
controller.enqueue({
type: "tool-call-delta",
toolCallId: chunk.toolCallId,
toolName: chunk.toolName,
argsTextDelta: chunk.argsTextDelta
})
}
break
}
case "tool-call": {
try {
const toolCall = await parseToolCall({
toolCall: chunk,
tools,
repairToolCall,
system,
messages
})
controller.enqueue(toolCall)
const tool2 = tools[toolCall.toolName]
if (tool2.execute != null) {
const toolExecutionId = (0, import_ui_utils7.generateId)()
outstandingToolResults.add(toolExecutionId)
recordSpan({
name: "ai.toolCall",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.toolCall",
telemetry
}),
"ai.toolCall.name": toolCall.toolName,
"ai.toolCall.id": toolCall.toolCallId,
"ai.toolCall.args": {
output: () => JSON.stringify(toolCall.args)
}
}
}),
tracer,
fn: async (span) => tool2.execute(toolCall.args, {
toolCallId: toolCall.toolCallId,
messages,
abortSignal
}).then(
(result) => {
toolResultsStreamController.enqueue({
...toolCall,
type: "tool-result",
result
})
outstandingToolResults.delete(toolExecutionId)
attemptClose()
try {
span.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.toolCall.result": {
output: () => JSON.stringify(result)
}
}
})
)
} catch (ignored) {
}
},
(error) => {
toolResultsStreamController.enqueue({
type: "error",
error: new ToolExecutionError({
toolCallId: toolCall.toolCallId,
toolName: toolCall.toolName,
toolArgs: toolCall.args,
cause: error
})
})
outstandingToolResults.delete(toolExecutionId)
attemptClose()
}
)
})
}
} catch (error) {
toolResultsStreamController.enqueue({
type: "error",
error
})
}
break
}
case "finish": {
finishChunk = {
type: "finish",
finishReason: chunk.finishReason,
logprobs: chunk.logprobs,
usage: calculateLanguageModelUsage(chunk.usage),
experimental_providerMetadata: chunk.providerMetadata
}
break
}
default: {
const _exhaustiveCheck = chunkType
throw new Error(`Unhandled chunk type: ${_exhaustiveCheck}`)
}
}
},
flush() {
canClose = true
attemptClose()
}
})
return new ReadableStream({
async start(controller) {
return Promise.all([
generatorStream.pipeThrough(forwardStream).pipeTo(
new WritableStream({
write(chunk) {
controller.enqueue(chunk)
},
close() {
}
})
),
toolResultsStream.pipeTo(
new WritableStream({
write(chunk) {
controller.enqueue(chunk)
},
close() {
controller.close()
}
})
)
])
}
})
}
// core/generate-text/stream-text.ts
var originalGenerateId4 = (0, import_provider_utils11.createIdGenerator)({
prefix: "aitxt",
size: 24
})
var originalGenerateMessageId2 = (0, import_provider_utils11.createIdGenerator)({
prefix: "msg",
size: 24
})
function streamText({
model,
tools,
toolChoice,
system,
prompt,
messages,
maxRetries,
abortSignal,
headers,
maxSteps = 1,
experimental_generateMessageId: generateMessageId = originalGenerateMessageId2,
experimental_output: output,
experimental_continueSteps: continueSteps = false,
experimental_telemetry: telemetry,
experimental_providerMetadata: providerMetadata,
experimental_toolCallStreaming: toolCallStreaming = false,
experimental_activeTools: activeTools,
experimental_repairToolCall: repairToolCall,
experimental_transform: transform,
onChunk,
onFinish,
onStepFinish,
_internal: {
now: now2 = now,
generateId: generateId3 = originalGenerateId4,
currentDate = () => /* @__PURE__ */ new Date()
} = {},
...settings
}) {
return new DefaultStreamTextResult({
model,
telemetry,
headers,
settings,
maxRetries,
abortSignal,
system,
prompt,
messages,
tools,
toolChoice,
toolCallStreaming,
transforms: asArray(transform),
activeTools,
repairToolCall,
maxSteps,
output,
continueSteps,
providerMetadata,
onChunk,
onFinish,
onStepFinish,
now: now2,
currentDate,
generateId: generateId3,
generateMessageId
})
}
function createOutputTransformStream(output) {
if (!output) {
return new TransformStream({
transform(chunk, controller) {
controller.enqueue({ part: chunk, partialOutput: void 0 })
}
})
}
let text2 = ""
let textChunk = ""
let lastPublishedJson = ""
return new TransformStream({
transform(chunk, controller) {
if (chunk.type !== "text-delta") {
controller.enqueue({
part: chunk,
partialOutput: void 0
})
return
}
text2 += chunk.textDelta
textChunk += chunk.textDelta
const result = output.parsePartial({ text: text2 })
if (result != null) {
const currentJson = JSON.stringify(result.partial)
if (currentJson !== lastPublishedJson) {
controller.enqueue({
part: {
type: "text-delta",
textDelta: textChunk
},
partialOutput: result.partial
})
lastPublishedJson = currentJson
textChunk = ""
}
}
},
flush(controller) {
if (textChunk.length > 0) {
controller.enqueue({
part: {
type: "text-delta",
textDelta: textChunk
},
partialOutput: void 0
})
}
}
})
}
var DefaultStreamTextResult = class {
constructor({
model,
telemetry,
headers,
settings,
maxRetries: maxRetriesArg,
abortSignal,
system,
prompt,
messages,
tools,
toolChoice,
toolCallStreaming,
transforms,
activeTools,
repairToolCall,
maxSteps,
output,
continueSteps,
providerMetadata,
onChunk,
onFinish,
onStepFinish,
now: now2,
currentDate,
generateId: generateId3,
generateMessageId
}) {
this.warningsPromise = new DelayedPromise()
this.usagePromise = new DelayedPromise()
this.finishReasonPromise = new DelayedPromise()
this.providerMetadataPromise = new DelayedPromise()
this.textPromise = new DelayedPromise()
this.toolCallsPromise = new DelayedPromise()
this.toolResultsPromise = new DelayedPromise()
this.requestPromise = new DelayedPromise()
this.responsePromise = new DelayedPromise()
this.stepsPromise = new DelayedPromise()
var _a14
if (maxSteps < 1) {
throw new InvalidArgumentError({
parameter: "maxSteps",
value: maxSteps,
message: "maxSteps must be at least 1"
})
}
this.output = output
let recordedStepText = ""
let recordedContinuationText = ""
let recordedFullText = ""
const recordedResponse = {
id: generateId3(),
timestamp: currentDate(),
modelId: model.modelId,
messages: []
}
let recordedToolCalls = []
let recordedToolResults = []
let recordedFinishReason = void 0
let recordedUsage = void 0
let stepType = "initial"
const recordedSteps = []
let rootSpan
const eventProcessor = new TransformStream({
async transform(chunk, controller) {
controller.enqueue(chunk)
const { part } = chunk
if (part.type === "text-delta" || part.type === "tool-call" || part.type === "tool-result" || part.type === "tool-call-streaming-start" || part.type === "tool-call-delta") {
await (onChunk == null ? void 0 : onChunk({ chunk: part }))
}
if (part.type === "text-delta") {
recordedStepText += part.textDelta
recordedContinuationText += part.textDelta
recordedFullText += part.textDelta
}
if (part.type === "tool-call") {
recordedToolCalls.push(part)
}
if (part.type === "tool-result") {
recordedToolResults.push(part)
}
if (part.type === "step-finish") {
const stepMessages = toResponseMessages({
text: recordedContinuationText,
tools: tools != null ? tools : {},
toolCalls: recordedToolCalls,
toolResults: recordedToolResults,
messageId: part.messageId,
generateMessageId
})
const currentStep = recordedSteps.length
let nextStepType = "done"
if (currentStep + 1 < maxSteps) {
if (continueSteps && part.finishReason === "length" && // only use continue when there are no tool calls:
recordedToolCalls.length === 0) {
nextStepType = "continue"
} else if (
// there are tool calls:
recordedToolCalls.length > 0 && // all current tool calls have results:
recordedToolResults.length === recordedToolCalls.length
) {
nextStepType = "tool-result"
}
}
const currentStepResult = {
stepType,
text: recordedStepText,
toolCalls: recordedToolCalls,
toolResults: recordedToolResults,
finishReason: part.finishReason,
usage: part.usage,
warnings: part.warnings,
logprobs: part.logprobs,
request: part.request,
response: {
...part.response,
messages: [...recordedResponse.messages, ...stepMessages]
},
experimental_providerMetadata: part.experimental_providerMetadata,
isContinued: part.isContinued
}
await (onStepFinish == null ? void 0 : onStepFinish(currentStepResult))
recordedSteps.push(currentStepResult)
recordedToolCalls = []
recordedToolResults = []
recordedStepText = ""
if (nextStepType !== "done") {
stepType = nextStepType
}
if (nextStepType !== "continue") {
recordedResponse.messages.push(...stepMessages)
recordedContinuationText = ""
}
}
if (part.type === "finish") {
recordedResponse.id = part.response.id
recordedResponse.timestamp = part.response.timestamp
recordedResponse.modelId = part.response.modelId
recordedResponse.headers = part.response.headers
recordedUsage = part.usage
recordedFinishReason = part.finishReason
}
},
async flush(controller) {
var _a15
try {
if (recordedSteps.length === 0) {
return
}
const lastStep = recordedSteps[recordedSteps.length - 1]
self.warningsPromise.resolve(lastStep.warnings)
self.requestPromise.resolve(lastStep.request)
self.responsePromise.resolve(lastStep.response)
self.toolCallsPromise.resolve(lastStep.toolCalls)
self.toolResultsPromise.resolve(lastStep.toolResults)
self.providerMetadataPromise.resolve(
lastStep.experimental_providerMetadata
)
const finishReason = recordedFinishReason != null ? recordedFinishReason : "unknown"
const usage = recordedUsage != null ? recordedUsage : {
completionTokens: NaN,
promptTokens: NaN,
totalTokens: NaN
}
self.finishReasonPromise.resolve(finishReason)
self.usagePromise.resolve(usage)
self.textPromise.resolve(recordedFullText)
self.stepsPromise.resolve(recordedSteps)
await (onFinish == null ? void 0 : onFinish({
finishReason,
logprobs: void 0,
usage,
text: recordedFullText,
toolCalls: lastStep.toolCalls,
toolResults: lastStep.toolResults,
request: (_a15 = lastStep.request) != null ? _a15 : {},
response: lastStep.response,
warnings: lastStep.warnings,
experimental_providerMetadata: lastStep.experimental_providerMetadata,
steps: recordedSteps
}))
rootSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": finishReason,
"ai.response.text": { output: () => recordedFullText },
"ai.response.toolCalls": {
output: () => {
var _a16
return ((_a16 = lastStep.toolCalls) == null ? void 0 : _a16.length) ? JSON.stringify(lastStep.toolCalls) : void 0
}
},
"ai.usage.promptTokens": usage.promptTokens,
"ai.usage.completionTokens": usage.completionTokens
}
})
)
} catch (error) {
controller.error(error)
} finally {
rootSpan.end()
}
}
})
const stitchableStream = createStitchableStream()
this.addStream = stitchableStream.addStream
this.closeStream = stitchableStream.close
let stream = stitchableStream.stream
for (const transform of transforms) {
stream = stream.pipeThrough(
transform({
tools,
stopStream() {
stitchableStream.terminate()
}
})
)
}
this.baseStream = stream.pipeThrough(createOutputTransformStream(output)).pipeThrough(eventProcessor)
const { maxRetries, retry } = prepareRetries({
maxRetries: maxRetriesArg
})
const tracer = getTracer(telemetry)
const baseTelemetryAttributes = getBaseTelemetryAttributes({
model,
telemetry,
headers,
settings: { ...settings, maxRetries }
})
const initialPrompt = standardizePrompt({
prompt: {
system: (_a14 = output == null ? void 0 : output.injectIntoSystemPrompt({ system, model })) != null ? _a14 : system,
prompt,
messages
},
tools
})
const self = this
recordSpan({
name: "ai.streamText",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({ operationId: "ai.streamText", telemetry }),
...baseTelemetryAttributes,
// specific settings that only make sense on the outer level:
"ai.prompt": {
input: () => JSON.stringify({ system, prompt, messages })
},
"ai.settings.maxSteps": maxSteps
}
}),
tracer,
endWhenDone: false,
fn: async (rootSpanArg) => {
rootSpan = rootSpanArg
async function streamStep({
currentStep,
responseMessages,
usage,
stepType: stepType2,
previousStepText,
hasLeadingWhitespace,
messageId
}) {
const promptFormat = responseMessages.length === 0 ? initialPrompt.type : "messages"
const stepInputMessages = [
...initialPrompt.messages,
...responseMessages
]
const promptMessages = await convertToLanguageModelPrompt({
prompt: {
type: promptFormat,
system: initialPrompt.system,
messages: stepInputMessages
},
modelSupportsImageUrls: model.supportsImageUrls,
modelSupportsUrl: model.supportsUrl
})
const mode = {
type: "regular",
...prepareToolsAndToolChoice({ tools, toolChoice, activeTools })
}
const {
result: { stream: stream2, warnings, rawResponse, request },
doStreamSpan,
startTimestampMs
} = await retry(
() => recordSpan({
name: "ai.streamText.doStream",
attributes: selectTelemetryAttributes({
telemetry,
attributes: {
...assembleOperationName({
operationId: "ai.streamText.doStream",
telemetry
}),
...baseTelemetryAttributes,
"ai.prompt.format": {
input: () => promptFormat
},
"ai.prompt.messages": {
input: () => JSON.stringify(promptMessages)
},
"ai.prompt.tools": {
// convert the language model level tools:
input: () => {
var _a15
return (_a15 = mode.tools) == null ? void 0 : _a15.map((tool2) => JSON.stringify(tool2))
}
},
"ai.prompt.toolChoice": {
input: () => mode.toolChoice != null ? JSON.stringify(mode.toolChoice) : void 0
},
// standardized gen-ai llm span attributes:
"gen_ai.system": model.provider,
"gen_ai.request.model": model.modelId,
"gen_ai.request.frequency_penalty": settings.frequencyPenalty,
"gen_ai.request.max_tokens": settings.maxTokens,
"gen_ai.request.presence_penalty": settings.presencePenalty,
"gen_ai.request.stop_sequences": settings.stopSequences,
"gen_ai.request.temperature": settings.temperature,
"gen_ai.request.top_k": settings.topK,
"gen_ai.request.top_p": settings.topP
}
}),
tracer,
endWhenDone: false,
fn: async (doStreamSpan2) => ({
startTimestampMs: now2(),
// get before the call
doStreamSpan: doStreamSpan2,
result: await model.doStream({
mode,
...prepareCallSettings(settings),
inputFormat: promptFormat,
responseFormat: output == null ? void 0 : output.responseFormat({ model }),
prompt: promptMessages,
providerMetadata,
abortSignal,
headers
})
})
})
)
const transformedStream = runToolsTransformation({
tools,
generatorStream: stream2,
toolCallStreaming,
tracer,
telemetry,
system,
messages: stepInputMessages,
repairToolCall,
abortSignal
})
const stepRequest = request != null ? request : {}
const stepToolCalls = []
const stepToolResults = []
let stepFinishReason = "unknown"
let stepUsage = {
promptTokens: 0,
completionTokens: 0,
totalTokens: 0
}
let stepProviderMetadata
let stepFirstChunk = true
let stepText = ""
let fullStepText = stepType2 === "continue" ? previousStepText : ""
let stepLogProbs
let stepResponse = {
id: generateId3(),
timestamp: currentDate(),
modelId: model.modelId
}
let chunkBuffer = ""
let chunkTextPublished = false
let inWhitespacePrefix = true
let hasWhitespaceSuffix = false
async function publishTextChunk({
controller,
chunk
}) {
controller.enqueue(chunk)
stepText += chunk.textDelta
fullStepText += chunk.textDelta
chunkTextPublished = true
hasWhitespaceSuffix = chunk.textDelta.trimEnd() !== chunk.textDelta
}
self.addStream(
transformedStream.pipeThrough(
new TransformStream({
async transform(chunk, controller) {
var _a15, _b, _c
if (stepFirstChunk) {
const msToFirstChunk = now2() - startTimestampMs
stepFirstChunk = false
doStreamSpan.addEvent("ai.stream.firstChunk", {
"ai.response.msToFirstChunk": msToFirstChunk
})
doStreamSpan.setAttributes({
"ai.response.msToFirstChunk": msToFirstChunk
})
controller.enqueue({
type: "step-start",
messageId,
request: stepRequest,
warnings: warnings != null ? warnings : []
})
}
if (chunk.type === "text-delta" && chunk.textDelta.length === 0) {
return
}
const chunkType = chunk.type
switch (chunkType) {
case "text-delta": {
if (continueSteps) {
const trimmedChunkText = inWhitespacePrefix && hasLeadingWhitespace ? chunk.textDelta.trimStart() : chunk.textDelta
if (trimmedChunkText.length === 0) {
break
}
inWhitespacePrefix = false
chunkBuffer += trimmedChunkText
const split = splitOnLastWhitespace(chunkBuffer)
if (split != null) {
chunkBuffer = split.suffix
await publishTextChunk({
controller,
chunk: {
type: "text-delta",
textDelta: split.prefix + split.whitespace
}
})
}
} else {
await publishTextChunk({ controller, chunk })
}
break
}
case "tool-call": {
controller.enqueue(chunk)
stepToolCalls.push(chunk)
break
}
case "tool-result": {
controller.enqueue(chunk)
stepToolResults.push(chunk)
break
}
case "response-metadata": {
stepResponse = {
id: (_a15 = chunk.id) != null ? _a15 : stepResponse.id,
timestamp: (_b = chunk.timestamp) != null ? _b : stepResponse.timestamp,
modelId: (_c = chunk.modelId) != null ? _c : stepResponse.modelId
}
break
}
case "finish": {
stepUsage = chunk.usage
stepFinishReason = chunk.finishReason
stepProviderMetadata = chunk.experimental_providerMetadata
stepLogProbs = chunk.logprobs
const msToFinish = now2() - startTimestampMs
doStreamSpan.addEvent("ai.stream.finish")
doStreamSpan.setAttributes({
"ai.response.msToFinish": msToFinish,
"ai.response.avgCompletionTokensPerSecond": 1e3 * stepUsage.completionTokens / msToFinish
})
break
}
case "tool-call-streaming-start":
case "tool-call-delta": {
controller.enqueue(chunk)
break
}
case "error": {
controller.enqueue(chunk)
stepFinishReason = "error"
break
}
default: {
const exhaustiveCheck = chunkType
throw new Error(`Unknown chunk type: ${exhaustiveCheck}`)
}
}
},
// invoke onFinish callback and resolve toolResults promise when the stream is about to close:
async flush(controller) {
const stepToolCallsJson = stepToolCalls.length > 0 ? JSON.stringify(stepToolCalls) : void 0
let nextStepType = "done"
if (currentStep + 1 < maxSteps) {
if (continueSteps && stepFinishReason === "length" && // only use continue when there are no tool calls:
stepToolCalls.length === 0) {
nextStepType = "continue"
} else if (
// there are tool calls:
stepToolCalls.length > 0 && // all current tool calls have results:
stepToolResults.length === stepToolCalls.length
) {
nextStepType = "tool-result"
}
}
if (continueSteps && chunkBuffer.length > 0 && (nextStepType !== "continue" || // when the next step is a regular step, publish the buffer
stepType2 === "continue" && !chunkTextPublished)) {
await publishTextChunk({
controller,
chunk: {
type: "text-delta",
textDelta: chunkBuffer
}
})
chunkBuffer = ""
}
try {
doStreamSpan.setAttributes(
selectTelemetryAttributes({
telemetry,
attributes: {
"ai.response.finishReason": stepFinishReason,
"ai.response.text": { output: () => stepText },
"ai.response.toolCalls": {
output: () => stepToolCallsJson
},
"ai.response.id": stepResponse.id,
"ai.response.model": stepResponse.modelId,
"ai.response.timestamp": stepResponse.timestamp.toISOString(),
"ai.usage.promptTokens": stepUsage.promptTokens,
"ai.usage.completionTokens": stepUsage.completionTokens,
// standardized gen-ai llm span attributes:
"gen_ai.response.finish_reasons": [stepFinishReason],
"gen_ai.response.id": stepResponse.id,
"gen_ai.response.model": stepResponse.modelId,
"gen_ai.usage.input_tokens": stepUsage.promptTokens,
"gen_ai.usage.output_tokens": stepUsage.completionTokens
}
})
)
} catch (error) {
} finally {
doStreamSpan.end()
}
controller.enqueue({
type: "step-finish",
finishReason: stepFinishReason,
usage: stepUsage,
experimental_providerMetadata: stepProviderMetadata,
logprobs: stepLogProbs,
request: stepRequest,
response: {
...stepResponse,
headers: rawResponse == null ? void 0 : rawResponse.headers
},
warnings,
isContinued: nextStepType === "continue",
messageId
})
const combinedUsage = addLanguageModelUsage(usage, stepUsage)
if (nextStepType === "done") {
controller.enqueue({
type: "finish",
finishReason: stepFinishReason,
usage: combinedUsage,
experimental_providerMetadata: stepProviderMetadata,
logprobs: stepLogProbs,
response: {
...stepResponse,
headers: rawResponse == null ? void 0 : rawResponse.headers
}
})
self.closeStream()
} else {
if (stepType2 === "continue") {
const lastMessage = responseMessages[responseMessages.length - 1]
if (typeof lastMessage.content === "string") {
lastMessage.content += stepText
} else {
lastMessage.content.push({
text: stepText,
type: "text"
})
}
} else {
responseMessages.push(
...toResponseMessages({
text: stepText,
tools: tools != null ? tools : {},
toolCalls: stepToolCalls,
toolResults: stepToolResults,
messageId,
generateMessageId
})
)
}
await streamStep({
currentStep: currentStep + 1,
responseMessages,
usage: combinedUsage,
stepType: nextStepType,
previousStepText: fullStepText,
hasLeadingWhitespace: hasWhitespaceSuffix,
messageId: (
// keep the same id when continuing a step:
nextStepType === "continue" ? messageId : generateMessageId()
)
})
}
}
})
)
)
}
await streamStep({
currentStep: 0,
responseMessages: [],
usage: {
promptTokens: 0,
completionTokens: 0,
totalTokens: 0
},
previousStepText: "",
stepType: "initial",
hasLeadingWhitespace: false,
messageId: generateMessageId()
})
}
}).catch((error) => {
self.addStream(
new ReadableStream({
start(controller) {
controller.enqueue({ type: "error", error })
controller.close()
}
})
)
self.closeStream()
})
}
get warnings() {
return this.warningsPromise.value
}
get usage() {
return this.usagePromise.value
}
get finishReason() {
return this.finishReasonPromise.value
}
get experimental_providerMetadata() {
return this.providerMetadataPromise.value
}
get text() {
return this.textPromise.value
}
get toolCalls() {
return this.toolCallsPromise.value
}
get toolResults() {
return this.toolResultsPromise.value
}
get request() {
return this.requestPromise.value
}
get response() {
return this.responsePromise.value
}
get steps() {
return this.stepsPromise.value
}
/**
Split out a new stream from the original stream.
The original stream is replaced to allow for further splitting,
since we do not know how many times the stream will be split.
Note: this leads to buffering the stream content on the server.
However, the LLM results are expected to be small enough to not cause issues.
*/
teeStream() {
const [stream1, stream2] = this.baseStream.tee()
this.baseStream = stream2
return stream1
}
get textStream() {
return createAsyncIterableStream(
this.teeStream().pipeThrough(
new TransformStream({
transform({ part }, controller) {
if (part.type === "text-delta") {
controller.enqueue(part.textDelta)
} else if (part.type === "error") {
controller.error(part.error)
}
}
})
)
)
}
get fullStream() {
return createAsyncIterableStream(
this.teeStream().pipeThrough(
new TransformStream({
transform({ part }, controller) {
controller.enqueue(part)
}
})
)
)
}
get experimental_partialOutputStream() {
if (this.output == null) {
throw new NoOutputSpecifiedError()
}
return createAsyncIterableStream(
this.teeStream().pipeThrough(
new TransformStream({
transform({ partialOutput }, controller) {
if (partialOutput != null) {
controller.enqueue(partialOutput)
}
}
})
)
)
}
toDataStreamInternal({
getErrorMessage: getErrorMessage5 = () => "An error occurred.",
// mask error messages for safety by default
sendUsage = true
} = {}) {
let aggregatedResponse = ""
const callbackTransformer = new TransformStream({
async transform(chunk, controller) {
controller.enqueue(chunk)
if (chunk.type === "text-delta") {
aggregatedResponse += chunk.textDelta
}
}
})
const streamPartsTransformer = new TransformStream({
transform: async (chunk, controller) => {
const chunkType = chunk.type
switch (chunkType) {
case "text-delta": {
controller.enqueue((0, import_ui_utils8.formatDataStreamPart)("text", chunk.textDelta))
break
}
case "tool-call-streaming-start": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("tool_call_streaming_start", {
toolCallId: chunk.toolCallId,
toolName: chunk.toolName
})
)
break
}
case "tool-call-delta": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("tool_call_delta", {
toolCallId: chunk.toolCallId,
argsTextDelta: chunk.argsTextDelta
})
)
break
}
case "tool-call": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("tool_call", {
toolCallId: chunk.toolCallId,
toolName: chunk.toolName,
args: chunk.args
})
)
break
}
case "tool-result": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("tool_result", {
toolCallId: chunk.toolCallId,
result: chunk.result
})
)
break
}
case "error": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("error", getErrorMessage5(chunk.error))
)
break
}
case "step-start": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("start_step", {
messageId: chunk.messageId
})
)
break
}
case "step-finish": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("finish_step", {
finishReason: chunk.finishReason,
usage: sendUsage ? {
promptTokens: chunk.usage.promptTokens,
completionTokens: chunk.usage.completionTokens
} : void 0,
isContinued: chunk.isContinued
})
)
break
}
case "finish": {
controller.enqueue(
(0, import_ui_utils8.formatDataStreamPart)("finish_message", {
finishReason: chunk.finishReason,
usage: sendUsage ? {
promptTokens: chunk.usage.promptTokens,
completionTokens: chunk.usage.completionTokens
} : void 0
})
)
break
}
default: {
const exhaustiveCheck = chunkType
throw new Error(`Unknown chunk type: ${exhaustiveCheck}`)
}
}
}
})
return this.fullStream.pipeThrough(callbackTransformer).pipeThrough(streamPartsTransformer)
}
pipeDataStreamToResponse(response, {
status,
statusText,
headers,
data,
getErrorMessage: getErrorMessage5,
sendUsage
} = {}) {
writeToServerResponse({
response,
status,
statusText,
headers: prepareOutgoingHttpHeaders(headers, {
contentType: "text/plain; charset=utf-8",
dataStreamVersion: "v1"
}),
stream: this.toDataStream({ data, getErrorMessage: getErrorMessage5, sendUsage })
})
}
pipeTextStreamToResponse(response, init) {
writeToServerResponse({
response,
status: init == null ? void 0 : init.status,
statusText: init == null ? void 0 : init.statusText,
headers: prepareOutgoingHttpHeaders(init == null ? void 0 : init.headers, {
contentType: "text/plain; charset=utf-8"
}),
stream: this.textStream.pipeThrough(new TextEncoderStream())
})
}
// TODO breaking change 5.0: remove pipeThrough(new TextEncoderStream())
toDataStream(options) {
const stream = this.toDataStreamInternal({
getErrorMessage: options == null ? void 0 : options.getErrorMessage,
sendUsage: options == null ? void 0 : options.sendUsage
}).pipeThrough(new TextEncoderStream())
return (options == null ? void 0 : options.data) ? mergeStreams(options == null ? void 0 : options.data.stream, stream) : stream
}
mergeIntoDataStream(writer) {
writer.merge(
this.toDataStreamInternal({
getErrorMessage: writer.onError
})
)
}
toDataStreamResponse({
headers,
status,
statusText,
data,
getErrorMessage: getErrorMessage5,
sendUsage
} = {}) {
return new Response(
this.toDataStream({ data, getErrorMessage: getErrorMessage5, sendUsage }),
{
status,
statusText,
headers: prepareResponseHeaders(headers, {
contentType: "text/plain; charset=utf-8",
dataStreamVersion: "v1"
})
}
)
}
toTextStreamResponse(init) {
var _a14
return new Response(this.textStream.pipeThrough(new TextEncoderStream()), {
status: (_a14 = init == null ? void 0 : init.status) != null ? _a14 : 200,
headers: prepareResponseHeaders(init == null ? void 0 : init.headers, {
contentType: "text/plain; charset=utf-8"
})
})
}
}
// core/middleware/wrap-language-model.ts
var experimental_wrapLanguageModel = ({
model,
middleware: { transformParams, wrapGenerate, wrapStream },
modelId,
providerId
}) => {
async function doTransform({
params,
type
}) {
return transformParams ? await transformParams({ params, type }) : params
}
return {
specificationVersion: "v1",
provider: providerId != null ? providerId : model.provider,
modelId: modelId != null ? modelId : model.modelId,
defaultObjectGenerationMode: model.defaultObjectGenerationMode,
supportsImageUrls: model.supportsImageUrls,
supportsUrl: model.supportsUrl,
supportsStructuredOutputs: model.supportsStructuredOutputs,
async doGenerate(params) {
const transformedParams = await doTransform({ params, type: "generate" })
const doGenerate = async () => model.doGenerate(transformedParams)
return wrapGenerate ? wrapGenerate({ doGenerate, params: transformedParams, model }) : doGenerate()
},
async doStream(params) {
const transformedParams = await doTransform({ params, type: "stream" })
const doStream = async () => model.doStream(transformedParams)
return wrapStream ? wrapStream({ doStream, params: transformedParams, model }) : doStream()
}
}
}
// core/prompt/append-response-messages.ts
function appendResponseMessages({
messages,
responseMessages
}) {
var _a14
const clonedMessages = structuredClone(messages)
for (const message of responseMessages) {
const role = message.role
switch (role) {
case "assistant": {
clonedMessages.push({
role: "assistant",
id: message.id,
createdAt: /* @__PURE__ */ new Date(),
// generate a createdAt date for the message, will be overridden by the client
// only include text in the content:
content: typeof message.content === "string" ? message.content : message.content.filter((part) => part.type === "text").map((part) => part.text).join(""),
// separate tool calls from the content:
toolInvocations: (typeof message.content === "string" ? [] : message.content.filter((part) => part.type === "tool-call")).map((call) => ({
state: "call",
...call
}))
})
break
}
case "tool": {
const previousMessage = clonedMessages[clonedMessages.length - 1];
(_a14 = previousMessage.toolInvocations) != null ? _a14 : previousMessage.toolInvocations = []
if (previousMessage.role !== "assistant") {
throw new Error(
`Tool result must follow an assistant message: ${previousMessage.role}`
)
}
for (const part of message.content) {
const toolCall = previousMessage.toolInvocations.find(
(call) => call.toolCallId === part.toolCallId
)
if (!toolCall) {
throw new Error("Tool call not found in previous message")
}
toolCall.state = "result"
const toolResult = toolCall
toolResult.result = part.result
}
break
}
default: {
const _exhaustiveCheck = role
throw new Error(`Unsupported message role: ${_exhaustiveCheck}`)
}
}
}
return clonedMessages
}
// core/registry/custom-provider.ts
var import_provider18 = require("@ai-sdk/provider")
function experimental_customProvider({
languageModels,
textEmbeddingModels,
fallbackProvider
}) {
return {
languageModel(modelId) {
if (languageModels != null && modelId in languageModels) {
return languageModels[modelId]
}
if (fallbackProvider) {
return fallbackProvider.languageModel(modelId)
}
throw new import_provider18.NoSuchModelError({ modelId, modelType: "languageModel" })
},
textEmbeddingModel(modelId) {
if (textEmbeddingModels != null && modelId in textEmbeddingModels) {
return textEmbeddingModels[modelId]
}
if (fallbackProvider) {
return fallbackProvider.textEmbeddingModel(modelId)
}
throw new import_provider18.NoSuchModelError({ modelId, modelType: "textEmbeddingModel" })
}
}
}
// core/registry/no-such-provider-error.ts
var import_provider19 = require("@ai-sdk/provider")
var name13 = "AI_NoSuchProviderError"
var marker13 = `vercel.ai.error.${name13}`
var symbol13 = Symbol.for(marker13)
var _a13
var NoSuchProviderError = class extends import_provider19.NoSuchModelError {
constructor({
modelId,
modelType,
providerId,
availableProviders,
message = `No such provider: ${providerId} (available providers: ${availableProviders.join()})`
}) {
super({ errorName: name13, modelId, modelType, message })
this[_a13] = true
this.providerId = providerId
this.availableProviders = availableProviders
}
static isInstance(error) {
return import_provider19.AISDKError.hasMarker(error, marker13)
}
}
_a13 = symbol13
// core/registry/provider-registry.ts
var import_provider20 = require("@ai-sdk/provider")
function experimental_createProviderRegistry(providers) {
const registry = new DefaultProviderRegistry()
for (const [id, provider] of Object.entries(providers)) {
registry.registerProvider({ id, provider })
}
return registry
}
var DefaultProviderRegistry = class {
constructor() {
this.providers = {}
}
registerProvider({ id, provider }) {
this.providers[id] = provider
}
getProvider(id) {
const provider = this.providers[id]
if (provider == null) {
throw new NoSuchProviderError({
modelId: id,
modelType: "languageModel",
providerId: id,
availableProviders: Object.keys(this.providers)
})
}
return provider
}
splitId(id, modelType) {
const index = id.indexOf(":")
if (index === -1) {
throw new import_provider20.NoSuchModelError({
modelId: id,
modelType,
message: `Invalid ${modelType} id for registry: ${id} (must be in the format "providerId:modelId")`
})
}
return [id.slice(0, index), id.slice(index + 1)]
}
languageModel(id) {
var _a14, _b
const [providerId, modelId] = this.splitId(id, "languageModel")
const model = (_b = (_a14 = this.getProvider(providerId)).languageModel) == null ? void 0 : _b.call(_a14, modelId)
if (model == null) {
throw new import_provider20.NoSuchModelError({ modelId: id, modelType: "languageModel" })
}
return model
}
textEmbeddingModel(id) {
var _a14
const [providerId, modelId] = this.splitId(id, "textEmbeddingModel")
const provider = this.getProvider(providerId)
const model = (_a14 = provider.textEmbeddingModel) == null ? void 0 : _a14.call(provider, modelId)
if (model == null) {
throw new import_provider20.NoSuchModelError({
modelId: id,
modelType: "textEmbeddingModel"
})
}
return model
}
/**
* @deprecated Use `textEmbeddingModel` instead.
*/
textEmbedding(id) {
return this.textEmbeddingModel(id)
}
}
// core/tool/tool.ts
function tool(tool2) {
return tool2
}
// core/util/cosine-similarity.ts
function cosineSimilarity(vector1, vector2, options = {
throwErrorForEmptyVectors: false
}) {
const { throwErrorForEmptyVectors } = options
if (vector1.length !== vector2.length) {
throw new Error(
`Vectors must have the same length (vector1: ${vector1.length} elements, vector2: ${vector2.length} elements)`
)
}
if (throwErrorForEmptyVectors && vector1.length === 0) {
throw new InvalidArgumentError({
parameter: "vector1",
value: vector1,
message: "Vectors cannot be empty"
})
}
const magnitude1 = magnitude(vector1)
const magnitude2 = magnitude(vector2)
if (magnitude1 === 0 || magnitude2 === 0) {
return 0
}
return dotProduct(vector1, vector2) / (magnitude1 * magnitude2)
}
function dotProduct(vector1, vector2) {
return vector1.reduce(
(accumulator, value, index) => accumulator + value * vector2[index],
0
)
}
function magnitude(vector) {
return Math.sqrt(dotProduct(vector, vector))
}
// core/util/simulate-readable-stream.ts
function simulateReadableStream({
chunks,
initialDelayInMs = 0,
chunkDelayInMs = 0,
_internal
}) {
var _a14
const delay2 = (_a14 = _internal == null ? void 0 : _internal.delay) != null ? _a14 : delay
let index = 0
return new ReadableStream({
async pull(controller) {
if (index < chunks.length) {
await delay2(index === 0 ? initialDelayInMs : chunkDelayInMs)
controller.enqueue(chunks[index++])
} else {
controller.close()
}
}
})
}
// streams/assistant-response.ts
var import_ui_utils10 = require("@ai-sdk/ui-utils")
function AssistantResponse({ threadId, messageId }, process2) {
const stream = new ReadableStream({
async start(controller) {
var _a14
const textEncoder = new TextEncoder()
const sendMessage = (message) => {
controller.enqueue(
textEncoder.encode(
(0, import_ui_utils10.formatAssistantStreamPart)("assistant_message", message)
)
)
}
const sendDataMessage = (message) => {
controller.enqueue(
textEncoder.encode(
(0, import_ui_utils10.formatAssistantStreamPart)("data_message", message)
)
)
}
const sendError = (errorMessage) => {
controller.enqueue(
textEncoder.encode((0, import_ui_utils10.formatAssistantStreamPart)("error", errorMessage))
)
}
const forwardStream = async (stream2) => {
var _a15, _b
let result = void 0
for await (const value of stream2) {
switch (value.event) {
case "thread.message.created": {
controller.enqueue(
textEncoder.encode(
(0, import_ui_utils10.formatAssistantStreamPart)("assistant_message", {
id: value.data.id,
role: "assistant",
content: [{ type: "text", text: { value: "" } }]
})
)
)
break
}
case "thread.message.delta": {
const content = (_a15 = value.data.delta.content) == null ? void 0 : _a15[0]
if ((content == null ? void 0 : content.type) === "text" && ((_b = content.text) == null ? void 0 : _b.value) != null) {
controller.enqueue(
textEncoder.encode(
(0, import_ui_utils10.formatAssistantStreamPart)("text", content.text.value)
)
)
}
break
}
case "thread.run.completed":
case "thread.run.requires_action": {
result = value.data
break
}
}
}
return result
}
controller.enqueue(
textEncoder.encode(
(0, import_ui_utils10.formatAssistantStreamPart)("assistant_control_data", {
threadId,
messageId
})
)
)
try {
await process2({
sendMessage,
sendDataMessage,
forwardStream
})
} catch (error) {
sendError((_a14 = error.message) != null ? _a14 : `${error}`)
} finally {
controller.close()
}
},
pull(controller) {
},
cancel() {
}
})
return new Response(stream, {
status: 200,
headers: {
"Content-Type": "text/plain; charset=utf-8"
}
})
}
// streams/langchain-adapter.ts
var langchain_adapter_exports = {}
__export(langchain_adapter_exports, {
mergeIntoDataStream: () => mergeIntoDataStream,
toDataStream: () => toDataStream,
toDataStreamResponse: () => toDataStreamResponse
})
var import_ui_utils11 = require("@ai-sdk/ui-utils")
// streams/stream-callbacks.ts
function createCallbacksTransformer(callbacks = {}) {
const textEncoder = new TextEncoder()
let aggregatedResponse = ""
return new TransformStream({
async start() {
if (callbacks.onStart)
await callbacks.onStart()
},
async transform(message, controller) {
controller.enqueue(textEncoder.encode(message))
aggregatedResponse += message
if (callbacks.onToken)
await callbacks.onToken(message)
if (callbacks.onText && typeof message === "string") {
await callbacks.onText(message)
}
},
async flush() {
if (callbacks.onCompletion) {
await callbacks.onCompletion(aggregatedResponse)
}
if (callbacks.onFinal) {
await callbacks.onFinal(aggregatedResponse)
}
}
})
}
// streams/langchain-adapter.ts
function toDataStreamInternal(stream, callbacks) {
return stream.pipeThrough(
new TransformStream({
transform: async (value, controller) => {
var _a14
if (typeof value === "string") {
controller.enqueue(value)
return
}
if ("event" in value) {
if (value.event === "on_chat_model_stream") {
forwardAIMessageChunk(
(_a14 = value.data) == null ? void 0 : _a14.chunk,
controller
)
}
return
}
forwardAIMessageChunk(value, controller)
}
})
).pipeThrough(createCallbacksTransformer(callbacks)).pipeThrough(new TextDecoderStream()).pipeThrough(
new TransformStream({
transform: async (chunk, controller) => {
controller.enqueue((0, import_ui_utils11.formatDataStreamPart)("text", chunk))
}
})
)
}
function toDataStream(stream, callbacks) {
return toDataStreamInternal(stream, callbacks).pipeThrough(
new TextEncoderStream()
)
}
function toDataStreamResponse(stream, options) {
var _a14
const dataStream = toDataStreamInternal(
stream,
options == null ? void 0 : options.callbacks
).pipeThrough(new TextEncoderStream())
const data = options == null ? void 0 : options.data
const init = options == null ? void 0 : options.init
const responseStream = data ? mergeStreams(data.stream, dataStream) : dataStream
return new Response(responseStream, {
status: (_a14 = init == null ? void 0 : init.status) != null ? _a14 : 200,
statusText: init == null ? void 0 : init.statusText,
headers: prepareResponseHeaders(init == null ? void 0 : init.headers, {
contentType: "text/plain; charset=utf-8",
dataStreamVersion: "v1"
})
})
}
function mergeIntoDataStream(stream, options) {
options.dataStream.merge(toDataStreamInternal(stream, options.callbacks))
}
function forwardAIMessageChunk(chunk, controller) {
if (typeof chunk.content === "string") {
controller.enqueue(chunk.content)
} else {
const content = chunk.content
for (const item of content) {
if (item.type === "text") {
controller.enqueue(item.text)
}
}
}
}
// streams/llamaindex-adapter.ts
var llamaindex_adapter_exports = {}
__export(llamaindex_adapter_exports, {
mergeIntoDataStream: () => mergeIntoDataStream2,
toDataStream: () => toDataStream2,
toDataStreamResponse: () => toDataStreamResponse2
})
var import_provider_utils13 = require("@ai-sdk/provider-utils")
var import_ui_utils12 = require("@ai-sdk/ui-utils")
function toDataStreamInternal2(stream, callbacks) {
const trimStart = trimStartOfStream()
return (0, import_provider_utils13.convertAsyncIteratorToReadableStream)(stream[Symbol.asyncIterator]()).pipeThrough(
new TransformStream({
async transform(message, controller) {
controller.enqueue(trimStart(message.delta))
}
})
).pipeThrough(createCallbacksTransformer(callbacks)).pipeThrough(new TextDecoderStream()).pipeThrough(
new TransformStream({
transform: async (chunk, controller) => {
controller.enqueue((0, import_ui_utils12.formatDataStreamPart)("text", chunk))
}
})
)
}
function toDataStream2(stream, callbacks) {
return toDataStreamInternal2(stream, callbacks).pipeThrough(
new TextEncoderStream()
)
}
function toDataStreamResponse2(stream, options = {}) {
var _a14
const { init, data, callbacks } = options
const dataStream = toDataStreamInternal2(stream, callbacks).pipeThrough(
new TextEncoderStream()
)
const responseStream = data ? mergeStreams(data.stream, dataStream) : dataStream
return new Response(responseStream, {
status: (_a14 = init == null ? void 0 : init.status) != null ? _a14 : 200,
statusText: init == null ? void 0 : init.statusText,
headers: prepareResponseHeaders(init == null ? void 0 : init.headers, {
contentType: "text/plain; charset=utf-8",
dataStreamVersion: "v1"
})
})
}
function mergeIntoDataStream2(stream, options) {
options.dataStream.merge(toDataStreamInternal2(stream, options.callbacks))
}
function trimStartOfStream() {
let isStreamStart = true
return (text2) => {
if (isStreamStart) {
text2 = text2.trimStart()
if (text2)
isStreamStart = false
}
return text2
}
}
// streams/stream-data.ts
var import_ui_utils13 = require("@ai-sdk/ui-utils")
// util/constants.ts
var HANGING_STREAM_WARNING_TIME_MS = 15 * 1e3
// streams/stream-data.ts
var StreamData = class {
constructor() {
this.encoder = new TextEncoder()
this.controller = null
this.isClosed = false
this.warningTimeout = null
const self = this
this.stream = new ReadableStream({
start: async (controller) => {
self.controller = controller
if (process.env.NODE_ENV === "development") {
self.warningTimeout = setTimeout(() => {
console.warn(
"The data stream is hanging. Did you forget to close it with `data.close()`?"
)
}, HANGING_STREAM_WARNING_TIME_MS)
}
},
pull: (controller) => {
},
cancel: (reason) => {
this.isClosed = true
}
})
}
async close() {
if (this.isClosed) {
throw new Error("Data Stream has already been closed.")
}
if (!this.controller) {
throw new Error("Stream controller is not initialized.")
}
this.controller.close()
this.isClosed = true
if (this.warningTimeout) {
clearTimeout(this.warningTimeout)
}
}
append(value) {
if (this.isClosed) {
throw new Error("Data Stream has already been closed.")
}
if (!this.controller) {
throw new Error("Stream controller is not initialized.")
}
this.controller.enqueue(
this.encoder.encode((0, import_ui_utils13.formatDataStreamPart)("data", [value]))
)
}
appendMessageAnnotation(value) {
if (this.isClosed) {
throw new Error("Data Stream has already been closed.")
}
if (!this.controller) {
throw new Error("Stream controller is not initialized.")
}
this.controller.enqueue(
this.encoder.encode((0, import_ui_utils13.formatDataStreamPart)("message_annotations", [value]))
)
}
}
// Annotate the CommonJS export names for ESM import in node:
module.exports = {
// AISDKError,
// APICallError,
AssistantResponse,
DownloadError,
// EmptyResponseBodyError,
InvalidArgumentError,
InvalidDataContentError,
InvalidMessageRoleError,
// InvalidPromptError,
// InvalidResponseDataError,
InvalidToolArgumentsError,
// JSONParseError,
// LangChainAdapter,
// LlamaIndexAdapter,
// LoadAPIKeyError,
MessageConversionError,
// NoContentGeneratedError,
NoObjectGeneratedError,
NoOutputSpecifiedError,
// NoSuchModelError,
NoSuchProviderError,
NoSuchToolError,
// Output,
RetryError,
StreamData,
ToolCallRepairError,
ToolExecutionError,
// TypeValidationError,
// UnsupportedFunctionalityError,
appendResponseMessages,
convertToCoreMessages,
cosineSimilarity,
createDataStream,
createDataStreamResponse,
// createIdGenerator,
embed,
embedMany,
experimental_createProviderRegistry,
experimental_customProvider,
// experimental_generateImage,
experimental_wrapLanguageModel,
// formatAssistantStreamPart,
// formatDataStreamPart,
// generateId,
generateObject,
generateText,
// jsonSchema,
// parseAssistantStreamPart,
// parseDataStreamPart,
pipeDataStreamToResponse,
// processDataStream,
// processTextStream,
simulateReadableStream,
smoothStream,
streamObject,
streamText,
tool
}