ecliptica/server/routers/old/coder/topic/dynamic-programming/dynamic-programming.json
Primakov Alexandr Alexandrovich 4b0d9b4dbc mongoose + tests
2024-10-16 11:06:23 +03:00

11 lines
2.3 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"title": "Dynamic programming",
"slug": "dynamic-programming",
"content": [
{"data":"## Hello markdown"},
{"data":"Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have optimal substructure.If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems.[1] In the optimization literature this relationship is called the Bellman equation."},
{"data":"#### Mathematical optimization"},
{"data": "In terms of mathematical optimization, dynamic programming usually refers to simplifying a decision by breaking it down into a sequence of decision steps over time. This is done by defining a sequence of value functions V1, V2, ..., Vn taking y as an argument representing the state of the system at times i from 1 to n. The definition of Vn(y) is the value obtained in state y at the last time n. The values Vi at earlier times i = n 1, n 2, ..., 2, 1 can be found by working backwards, using a recursive relationship called the Bellman equation. For i = 2, ..., n, Vi1 at any state y is calculated from Vi by maximizing a simple function (usually the sum) of the gain from a decision at time i 1 and the function Vi at the new state of the system if this decision is made. Since Vi has already been calculated for the needed states, the above operation yields Vi1 for those states. Finally, V1 at the initial state of the system is the value of the optimal solution. The optimal values of the decision variables can be recovered, one by one, by tracking back the calculations already performed."}
]
}